Spark SQL:自定義函數(示例)


UDF函數

scala> val df=spark.read.json("people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

scala> df.show
+---+------+
|age|  name|
+---+------+
| 30|  Andy|
| 19|Justin|
+---+------+

scala> spark.udf.register("addName",(x:String)=>"Name:"+x)
res50: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))

scala> df.createOrReplaceTempView("people")

scala> spark.sql("select addName(name),age from people").show
+-----------------+---+
|UDF:addName(name)|age|
+-----------------+---+
|        Name:Andy| 30|
|      Name:Justin| 19|
+-----------------+---+

UDAF函數

求平均值的自定義聚合函數
employees.json

{"name":"Michael", "salary":3000}
{"name":"Andy", "salary":4500}
{"name":"Justin", "salary":3500}
{"name":"Berta", "salary":4000}

弱類型用戶自定義聚合函數

import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}

object MyAverage extends UserDefinedAggregateFunction {
  //聚合函數輸入的類型
  override def inputSchema: StructType = StructType(StructField("inputColumn", LongType) :: Nil)

  //聚合函數緩沖區類型
  override def bufferSchema: StructType = StructType(StructField("sum", LongType) :: StructField("column", LongType) :: Nil)

  //返回值類型
  override def dataType: DataType = DoubleType

  //相同輸入是否返回相同輸出
  override def deterministic: Boolean = true

  //初始化
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L
    buffer(1) = 0L
  }

  //相同數據合並
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    if (!input.isNullAt(0)) {
      buffer(0) = buffer.getLong(0) + input.getLong(0)
      buffer(1) = buffer.getLong(1) + 1
    }
  }

  //不同Execute之間的數據合並
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
  }

  //計算結果
  override def evaluate(buffer: Row): Any = buffer.getLong(0).toDouble / buffer.getLong(1)
  
}


object test {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("sparksession")
      .master("local[*]")
      .getOrCreate()
    val df = spark.read.json("F:\\BigData\\employees.json")
    df.createOrReplaceTempView("employees")
    spark.udf.register("MyAverage", MyAverage)
    df.show()

    spark.sql("select MyAverage(salary) from employees").show()
    spark.stop()
  }
}

結果如下:

在這里插入圖片描述
在這里插入圖片描述

強類型用戶自定義聚合函數

import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}

case class Employee(name: String, salary: Long)

case class Average(var sum: Long, var count: Long)

object MyAverage2 extends Aggregator[Employee, Average, Double] {
  //定義一個數據結構,保存工資總數和工資總個數,初始都為0
  override def zero: Average = Average(0L, 0L)

  //統計數據
  override def reduce(b: Average, a: Employee): Average = {
    b.sum += a.salary
    b.count += 1
    b
  }

  //各個Execute數據匯總
  override def merge(b1: Average, b2: Average): Average = {
    b1.sum += b2.sum
    b1.count += b2.count
    b1
  }

  //計算輸出
  override def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count

  // 設定之間值類型的編碼器,要轉換成case類
  // Encoders.product是進行scala元組和case類轉換的編碼器
  override def bufferEncoder: Encoder[Average] = Encoders.product

  //設置最終輸出編碼器
  override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

object test2 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("sparksession")
      .master("local[*]")
      .getOrCreate()
    import spark.implicits._
    val ds = spark.read.json("F:\\BigData\\employees.json").as[Employee]
    ds.createOrReplaceTempView("employees")
    ds.show()

    ds.select(MyAverage2.toColumn.name("average_salary")).show()
    spark.stop()
  }
}

運行結果如下
在這里插入圖片描述
在這里插入圖片描述


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM