There are n lines l
on the 2D-plane.
Staring at these lines, Calabash is wondering how many pairs of (i,j
that 1≤i<j and l
share at least one common point. Note that two overlapping lines also share common points.
Please write a program to solve Calabash's problem.
InputThe first line of the input contains an integer T
, denoting the number of test cases.
In each test case, there is one integer n(1≤n≤100000)
in the first line, denoting the number of lines.
For the next n
lines, each line contains four integers x. It means l passes both (x and (x. (x will never be coincided with (x.
It is guaranteed that ∑n≤106
.
OutputFor each test case, print a single line containing an integer, denoting the answer.
Example
Input
3 2 0 0 1 1 0 1 1 0 2 0 0 0 1 1 0 1 1 2 0 0 1 1 0 0 1 1
Output
1 0 1
我們用兩個map來刻畫直線的特性,mp1刻畫a*x+b*y的直線系有多少個,mp2刻畫a*x+b*y=c這一條直線有多少個。
假設當前直線與之前的線段都相交,那么我們需要減去與這條直線平行而不重合的直線。即ans+=i-1+mp2[]-mp1[].
#include<iostream> #include<cstring> #include<string> #include<queue> #include<stack> #include<algorithm> #include<stdio.h> #include<map> #include<set> using namespace std; typedef long long ll; typedef pair<ll,ll>P; typedef pair<pair<ll,ll>,ll>Pi; const int maxn=100010; map<pair<ll,ll>,ll>mp1;//兩個參數a,b,代表形如a*x+b*y=c(c任意)的直線有多少個 map<pair<pair<ll,ll>,ll>,ll>mp2;//三個參數a,b,c,代表形如a*x+b*y=c的直線有多少個,即相同直線有多少個 ll cnt,ans,n; int main() { ios::sync_with_stdio(0); int T; cin>>T; while(T--){ ans=cnt=0; cin>>n; mp1.clear(),mp2.clear(); for(int i=1;i<=n;i++){ ll x1,x2,y1,y2; cin>>x1>>y1>>x2>>y2; ll a=x1-x2,b=y1-y2,c=x1*y2-x2*y1; ll g=__gcd(a,b); a/=g;b/=g;c/=g; mp1[P(a,b)]++; mp2[Pi(P(a,b),c)]++; ans+=i-1+mp2[Pi(P(a,b),c)]-mp1[P(a,b)];//假設與前i-1條邊都相交,需要減去與他平行而不重合的線段 } cout<<ans<<endl; } return 0; }