代碼來源於:https://www.cnblogs.com/huangyc/p/10327209.html ,本人只是簡介學習
1、 貝葉斯.py

import numpy as np from word_utils import * class NaiveBayesBase(object): def __init__(self): pass def fit(self, trainMatrix, trainCategory): ''' 朴素貝葉斯分類器訓練函數,求:p(Ci),基於詞匯表的p(w|Ci) Args: trainMatrix : 訓練矩陣,即向量化表示后的文檔(詞條集合) trainCategory : 文檔中每個詞條的列表標注 Return: p0Vect : 屬於0類別的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0)) p1Vect : 屬於1類別的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1)) pAbusive : 屬於1類別文檔的概率 ''' numTrainDocs = len(trainMatrix) # 長度為詞匯表長度 numWords = len(trainMatrix[0]) # p(ci) self.pAbusive = sum(trainCategory) / float(numTrainDocs) # 由於后期要計算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出現,則p(wj|Ci)=0,因此p(w|Ci)=0,這樣顯然是不對的 # 故在初始化時,將所有詞的出現數初始化為1,分母即出現詞條總數初始化為2 p0Num = np.ones(numWords) p1Num = np.ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) # p(wi | c1) # 為了避免下溢出(當所有的p都很小時,再相乘會得到0.0,使用log則會避免得到0.0) self.p1Vect = np.log(p1Num / p1Denom) # p(wi | c2) self.p0Vect = np.log(p0Num / p0Denom) return self def predict(self, testX): ''' 朴素貝葉斯分類器 Args: testX : 待分類的文檔向量(已轉換成array) p0Vect : p(w|C0) p1Vect : p(w|C1) pAbusive : p(C1) Return: 1 : 為侮辱性文檔 (基於當前文檔的p(w|C1)*p(C1)=log(基於當前文檔的p(w|C1))+log(p(C1))) 0 : 非侮辱性文檔 (基於當前文檔的p(w|C0)*p(C0)=log(基於當前文檔的p(w|C0))+log(p(C0))) ''' p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive) p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive) if p1 > p0: return 1 else: return 0 def loadDataSet(): '''數據加載函數。這里是一個小例子''' postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言論,代表上面6個樣本的類別 return postingList, classVec def checkNB(): '''測試''' listPosts, listClasses = loadDataSet() myVocabList = createVocabList(listPosts) trainMat = [] for postDoc in listPosts: trainMat.append(setOfWord2Vec(myVocabList, postDoc)) nb = NaiveBayesBase() nb.fit(np.array(trainMat), np.array(listClasses)) testEntry1 = ['love', 'my', 'dalmation'] thisDoc = np.array(setOfWord2Vec(myVocabList, testEntry1)) print(testEntry1, 'classified as:', nb.predict(thisDoc)) testEntry2 = ['stupid', 'garbage'] thisDoc2 = np.array(setOfWord2Vec(myVocabList, testEntry2)) print(testEntry2, 'classified as:', nb.predict(thisDoc2)) if __name__ == "__main__": checkNB()
2、word_utils.py

def createVocabList(dataSet): ''' 創建所有文檔中出現的不重復詞匯列表 Args: dataSet: 所有文檔 Return: 包含所有文檔的不重復詞列表,即詞匯表 ''' vocabSet = set([]) # 創建兩個集合的並集 for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) # 詞袋模型(bag-of-words model):詞在文檔中出現的次數 def bagOfWords2Vec(vocabList, inputSet): ''' 依據詞匯表,將輸入文本轉化成詞袋模型詞向量 Args: vocabList: 詞匯表 inputSet: 當前輸入文檔 Return: returnVec: 轉換成詞向量的文檔 例子: vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning'] inputset = ['python', 'machine', 'learning', 'python', 'machine'] returnVec = [0, 0, 2, 0, 2, 1] 長度與詞匯表一樣長,出現了的位置為1,未出現為0,如果詞匯表中無該單詞則print ''' returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 else: print("the word: %s is not in my vocabulary!" % word) return returnVec # 詞集模型(set-of-words model):詞在文檔中是否存在,存在為1,不存在為0 def setOfWord2Vec(vocabList, inputSet): ''' 依據詞匯表,將輸入文本轉化成詞集模型詞向量 Args: vocabList: 詞匯表 inputSet: 當前輸入文檔 Return: returnVec: 轉換成詞向量的文檔 例子: vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning'] inputset = ['python', 'machine', 'learning'] returnVec = [0, 0, 1, 0, 1, 1] 長度與詞匯表一樣長,出現了的位置為1,未出現為0,如果詞匯表中無該單詞則print ''' returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my vocabulary!" % word) return returnVec