一、搜索API
1. 搜索API 端點地址
從索引tweet里面搜索字段user為kimchy的記錄
GET /twitter/_search?q=user:kimchy
從索引tweet,user里面搜索字段user為kimchy的記錄
GET /twitter/tweet,user/_search?q=user:kimchy
GET /kimchy,elasticsearch/_search?q=tag:wow
從所有索引里面搜索字段tag為wow的記錄
GET /_all/_search?q=tag:wow
GET /_search?q=tag:wow
說明:搜索的端點地址可以是多索引多mapping type的。搜索的參數可作為URI請求參數給出,也可用 request body 給出
2. URI Search
URI 搜索方式通過URI參數來指定查詢相關參數。讓我們可以快速做一個查詢。
GET /twitter/_search?q=user:kimchy
可用的參數請參考: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html
3. 查詢結果說明
5. 特殊的查詢參數用法
如果我們只想知道有多少文檔匹配某個查詢,可以這樣用參數:
GET /bank/_search?q=city:b*&size=0
如果我們只想知道有沒有文檔匹配某個查詢,可以這樣用參數:
GET /bank/_search?q=city:b*&size=0&terminate_after=1
比較兩個查詢的結果可以知道第一個查詢返回所有的命中文檔數,第二個查詢由於只需要知道有沒有文檔,所以只要有文檔就立即返回
6. Request body Search
Request body 搜索方式以JSON格式在請求體中定義查詢 query。請求方式可以是 GET 、POST 。
GET /twitter/_search
{
"query" : {
"term" : { "user" : "kimchy" }
}
}
可用的參數:
timeout:請求超時時長,限定在指定時長內響應(即使沒查完);
from: 分頁的起始行,默認0;
size:分頁大小;
request_cache:是否緩存請求結果,默認true。
terminate_after:限定每個分片取幾個文檔。如果設置,則響應將有一個布爾型字段terminated_early來指示查詢執行是否實際已經terminate_early。缺省為no terminate_after;
search_type:查詢的執行方式,可選值dfs_query_then_fetch or query_then_fetch ,默認: query_then_fetch ;
batched_reduce_size:一次在協調節點上應該減少的分片結果的數量。如果請求中的潛在分片數量可能很大,則應將此值用作保護機制以減少每個搜索請求的內存開銷。
6.1 query 元素定義查詢
query 元素用Query DSL 來定義查詢。
GET /_search
{
"query" : {
"term" : { "user" : "kimchy" }
}
}
6.2 指定返回哪些內容
6.2.1 source filter 對_source字段進行選擇
GET /_search
{
"_source": false,
"query" : {
"term" : { "user" : "kimchy" }
}
}
通配符查詢
GET /_search
{
"_source": [ "obj1.*", "obj2.*" ],
"query" : {
"term" : { "user" : "kimchy" }
}
}
GET /_search
{
"_source": "obj.*",
"query" : {
"term" : { "user" : "kimchy" }
}
}
包含什么不包含什么
GET /_search
{
"_source": {
"includes": [ "obj1.*", "obj2.*" ],
"excludes": [ "*.description" ]
},
"query" : {
"term" : { "user" : "kimchy" }
}
}
6.2.2 stored_fields 來指定返回哪些stored字段
GET /_search
{
"stored_fields" : ["user", "postDate"],
"query" : {
"term" : { "user" : "kimchy" }
}
}
說明:* 可用來指定返回所有存儲字段
6.2.3 docValue Field 返回存儲了docValue的字段值
GET /_search
{
"query" : {
"match_all": {}
},
"docvalue_fields" : ["test1", "test2"]
}
6.2.4 version 來指定返回文檔的版本字段
GET /_search
{
"version": true,
"query" : {
"term" : { "user" : "kimchy" }
}
}
6.2.5 explain 返回文檔的評分解釋
GET /_search
{
"explain": true,
"query" : {
"term" : { "user" : "kimchy" }
}
}
6.2.6 Script Field 用腳本來對命中的每個文檔的字段進行運算后返回
GET /bank/_search
{
"query": {
"match_all": {}
},
"script_fields": {
"test1": {
"script": {
"lang": "painless",
"source": "doc['balance'].value * 2"
}
},
"test2": {
"script": {
"lang": "painless",
<!-- doc指文檔-->
"source": "doc['age'].value * params.factor",
"params": {
"factor": 2
}
}
} }}
搜索結果:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 1,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "25",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "44",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "99",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "119",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "126",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "145",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "183",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "190",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "208",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "222",
"_score": 1,
"fields": {
"test1": [
],
"test2": [
]
}
}
]
}
}
GET /bank/_search
{
"query": {
"match_all": {}
},
"script_fields": {
"ffx": {
"script": {
"lang": "painless",
"source": "doc['age'].value * doc['balance'].value"
}
},
"balance*2": {
"script": {
"lang": "painless",
"source": "params['_source'].balance*2"
}
}
}
}
說明:
params _source 取 _source字段值
官方推薦使用doc,理由是用doc效率比取_source 高
搜索結果:
{
"took": 26,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 1,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "25",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "44",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "99",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "119",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "126",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "145",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "183",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "190",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "208",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "222",
"_score": 1,
"fields": {
"balance*2": [
],
"ffx": [
]
}
}
]
}
}
6.2.7 min_score 限制最低評分得分
GET /_search
{
"min_score": 0.5,
"query" : {
"term" : { "user" : "kimchy" }
}
}
6.2.8 post_filter 后置過濾:在查詢命中文檔、完成聚合后,再對命中的文檔進行過濾。
如:要在一次查詢中查詢品牌為gucci且顏色為紅色的shirts,同時還要得到gucci品牌各顏色的shirts的分面統計。
創建索引並指定mappping:
PUT /shirts
{
"mappings": {
"_doc": {
"properties": {
"brand": { "type": "keyword"},
"color": { "type": "keyword"},
"model": { "type": "keyword"}
}
}
}
}
往索引里面放入文檔即類似數據庫里面的向表插入一行數據,並立即刷新
PUT /shirts/_doc/1?refresh
{
"brand": "gucci",
"color": "red",
"model": "slim"
}
PUT /shirts/_doc/2?refresh
{
"brand": "gucci",
"color": "green",
"model": "seec"
}
執行查詢:
GET /shirts/_search
{
"query": {
"bool": {
"filter": {
"term": { "brand": "gucci" }
}
}
},
"aggs": {
"colors": {
"terms": { "field": "color" }
}
},
"post_filter": {
"term": { "color": "red" }
}
}
查詢結果
{
"took": 109,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0,
"hits": [
{
"_index": "shirts",
"_type": "_doc",
"_id": "1",
"_score": 0,
"_source": {
"brand": "gucci",
"color": "red",
"model": "slim"
}
}
]
},
"aggregations": {
"colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "green",
"doc_count": 1
},
{
"key": "red",
"doc_count": 1
}
]
}
}
}
6.2.9 sort 排序
可以指定按一個或多個字段排序。也可通過_score指定按評分值排序,_doc 按索引順序排序。默認是按相關性評分從高到低排序。
GET /bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"age": {
"order": "desc"
} },
{
"balance": {
"order": "asc"
} },
"_score"
]
}
說明:
order 值:asc、desc。如果不給定,默認是asc,_score默認是desc
查詢結果:
{
"took": 181,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "549",
"_score": 1,
"_source": {
"account_number": 549,
"balance": 1932,
"firstname": "Jacqueline",
"lastname": "Maxwell",
"age": 40,
"gender": "M",
"address": "444 Schenck Place",
"employer": "Fuelworks",
"email": "jacquelinemaxwell@fuelworks.com",
"city": "Oretta",
"state": "OR"
},
"sort": [
40,
1932,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "306",
"_score": 1,
"_source": {
"account_number": 306,
"balance": 2171,
"firstname": "Hensley",
"lastname": "Hardin",
"age": 40,
"gender": "M",
"address": "196 Maujer Street",
"employer": "Neocent",
"email": "hensleyhardin@neocent.com",
"city": "Reinerton",
"state": "HI"
},
"sort": [
40,
2171,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "960",
"_score": 1,
"_source": {
"account_number": 960,
"balance": 2905,
"firstname": "Curry",
"lastname": "Vargas",
"age": 40,
"gender": "M",
"address": "242 Blake Avenue",
"employer": "Pearlesex",
"email": "curryvargas@pearlesex.com",
"city": "Henrietta",
"state": "NH"
},
"sort": [
40,
2905,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "584",
"_score": 1,
"_source": {
"account_number": 584,
"balance": 5346,
"firstname": "Pearson",
"lastname": "Bryant",
"age": 40,
"gender": "F",
"address": "971 Heyward Street",
"employer": "Anacho",
"email": "pearsonbryant@anacho.com",
"city": "Bluffview",
"state": "MN"
},
"sort": [
40,
5346,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "567",
"_score": 1,
"_source": {
"account_number": 567,
"balance": 6507,
"firstname": "Diana",
"lastname": "Dominguez",
"age": 40,
"gender": "M",
"address": "419 Albany Avenue",
"employer": "Ohmnet",
"email": "dianadominguez@ohmnet.com",
"city": "Wildwood",
"state": "TX"
},
"sort": [
40,
6507,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "938",
"_score": 1,
"_source": {
"account_number": 938,
"balance": 9597,
"firstname": "Sharron",
"lastname": "Santos",
"age": 40,
"gender": "F",
"address": "215 Matthews Place",
"employer": "Zenco",
"email": "sharronsantos@zenco.com",
"city": "Wattsville",
"state": "VT"
},
"sort": [
40,
9597,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "810",
"_score": 1,
"_source": {
"account_number": 810,
"balance": 10563,
"firstname": "Alyssa",
"lastname": "Ortega",
"age": 40,
"gender": "M",
"address": "977 Clymer Street",
"employer": "Eventage",
"email": "alyssaortega@eventage.com",
"city": "Convent",
"state": "SC"
},
"sort": [
40,
10563,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "302",
"_score": 1,
"_source": {
"account_number": 302,
"balance": 11298,
"firstname": "Isabella",
"lastname": "Hewitt",
"age": 40,
"gender": "M",
"address": "455 Bedford Avenue",
"employer": "Cincyr",
"email": "isabellahewitt@cincyr.com",
"city": "Blanford",
"state": "IN"
},
"sort": [
40,
11298,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "792",
"_score": 1,
"_source": {
"account_number": 792,
"balance": 13109,
"firstname": "Becky",
"lastname": "Jimenez",
"age": 40,
"gender": "F",
"address": "539 Front Street",
"employer": "Isologia",
"email": "beckyjimenez@isologia.com",
"city": "Summertown",
"state": "MI"
},
"sort": [
40,
13109,
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "495",
"_score": 1,
"_source": {
"account_number": 495,
"balance": 13478,
"firstname": "Abigail",
"lastname": "Nichols",
"age": 40,
"gender": "F",
"address": "887 President Street",
"employer": "Enquility",
"email": "abigailnichols@enquility.com",
"city": "Bagtown",
"state": "NM"
},
"sort": [
40,
13478,
]
}
]
}
}
結果中每個文檔會有排序字段值給出
"hits": {
"total": 1000,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "549",
"_score": 1,
"_source": {
"account_number": 549,
"balance": 1932, "age": 40, "state": "OR"
},
"sort": [
40,
1932,
1
]
}
多值字段排序
對於值是數組或多值的字段,也可進行排序,通過mode參數指定按多值的:
PUT /my_index/_doc/1?refresh
{
"product": "chocolate",
"price": [20, 4]
}
POST /_search
{
"query" : {
"term" : { "product" : "chocolate" }
},
"sort" : [
{"price" : {"order" : "asc", "mode" : "avg"}}
]
}
Missing values 缺失該字段的文檔
missing 的值可以是 _last, _first
GET /_search
{
"sort" : [
{ "price" : {"missing" : "_last"} }
],
"query" : {
"term" : { "product" : "chocolate" }
}
}
地理空間距離排序
官方文檔:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-sort.html#geo-sorting
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : [-70, 40],
"order" : "asc",
"unit" : "km",
"mode" : "min",
"distance_type" : "arc"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
參數說明:
_geo_distance 距離排序關鍵字
pin.location是 geo_point 類型的字段
distance_type:距離計算方式 arc球面 、plane 平面。
unit: 距離單位 km 、m 默認m
Script Based Sorting 基於腳本計算的排序
GET /_search
{
"query" : {
"term" : { "user" : "kimchy" }
},
"sort" : {
"_script" : {
"type" : "number",
"script" : {
"lang": "painless",
"source": "doc['field_name'].value * params.factor",
"params" : {
"factor" : 1.1
}
},
"order" : "asc"
}
}
}
6.3.0 折疊用 collapse指定根據某個字段對命中結果進行折疊
GET /bank/_search
{
"query": {
"match_all": {}
},
"collapse" : {
"field" : "age"
},
"sort": ["balance"]
}
查詢結果:
{
"took": 56,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "820",
"_score": null,
"_source": {
"account_number": 820,
"balance": 1011,
"firstname": "Shepard",
"lastname": "Ramsey",
"age": 24,
"gender": "F",
"address": "806 Village Court",
"employer": "Mantro",
"email": "shepardramsey@mantro.com",
"city": "Tibbie",
"state": "NV"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "894",
"_score": null,
"_source": {
"account_number": 894,
"balance": 1031,
"firstname": "Tyler",
"lastname": "Fitzgerald",
"age": 32,
"gender": "M",
"address": "787 Meserole Street",
"employer": "Jetsilk",
"email": "tylerfitzgerald@jetsilk.com",
"city": "Woodlands",
"state": "WV"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "953",
"_score": null,
"_source": {
"account_number": 953,
"balance": 1110,
"firstname": "Baxter",
"lastname": "Black",
"age": 27,
"gender": "M",
"address": "720 Stillwell Avenue",
"employer": "Uplinx",
"email": "baxterblack@uplinx.com",
"city": "Drummond",
"state": "MN"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "87",
"_score": null,
"_source": {
"account_number": 87,
"balance": 1133,
"firstname": "Hewitt",
"lastname": "Kidd",
"age": 22,
"gender": "M",
"address": "446 Halleck Street",
"employer": "Isologics",
"email": "hewittkidd@isologics.com",
"city": "Coalmont",
"state": "ME"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "749",
"_score": null,
"_source": {
"account_number": 749,
"balance": 1249,
"firstname": "Rush",
"lastname": "Boyle",
"age": 36,
"gender": "M",
"address": "310 Argyle Road",
"employer": "Sportan",
"email": "rushboyle@sportan.com",
"city": "Brady",
"state": "WA"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "315",
"_score": null,
"_source": {
"account_number": 315,
"balance": 1314,
"firstname": "Clare",
"lastname": "Morrow",
"age": 33,
"gender": "F",
"address": "728 Madeline Court",
"employer": "Gaptec",
"email": "claremorrow@gaptec.com",
"city": "Mapletown",
"state": "PA"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "348",
"_score": null,
"_source": {
"account_number": 348,
"balance": 1360,
"firstname": "Karina",
"lastname": "Russell",
"age": 37,
"gender": "M",
"address": "797 Moffat Street",
"employer": "Limozen",
"email": "karinarussell@limozen.com",
"city": "Riegelwood",
"state": "RI"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "490",
"_score": null,
"_source": {
"account_number": 490,
"balance": 1447,
"firstname": "Strong",
"lastname": "Hendrix",
"age": 26,
"gender": "F",
"address": "134 Beach Place",
"employer": "Duoflex",
"email": "stronghendrix@duoflex.com",
"city": "Allentown",
"state": "ND"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "174",
"_score": null,
"_source": {
"account_number": 174,
"balance": 1464,
"firstname": "Gamble",
"lastname": "Pierce",
"age": 23,
"gender": "F",
"address": "650 Eagle Street",
"employer": "Matrixity",
"email": "gamblepierce@matrixity.com",
"city": "Abiquiu",
"state": "OR"
},
"fields": {
"age": [
]
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "111",
"_score": null,
"_source": {
"account_number": 111,
"balance": 1481,
"firstname": "Traci",
"lastname": "Allison",
"age": 35,
"gender": "M",
"address": "922 Bryant Street",
"employer": "Enjola",
"email": "traciallison@enjola.com",
"city": "Robinette",
"state": "OR"
},
"fields": {
"age": [
]
},
"sort": [
]
}
]
}
}
高級折疊
GET /bank/_search
{
"query": {
"match_all": {}
},
"collapse" : {
"field" : "age" ,
<!--指定inner_hits來解釋折疊 -->
"inner_hits": {
"name": "details", <!-- 自命名 -->
"size": 5, <!-- 指定每組取幾個文檔 -->
"sort": [{ "balance": "asc" }] <!-- 組內排序 -->
},
"max_concurrent_group_searches": 4 <!-- 指定組查詢的並發數 -->
},
"sort": ["balance"]
}
查詢結果:
{
"took": 60,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "820",
"_score": null,
"_source": {
"account_number": 820,
"balance": 1011,
"firstname": "Shepard",
"lastname": "Ramsey",
"age": 24,
"gender": "F",
"address": "806 Village Court",
"employer": "Mantro",
"email": "shepardramsey@mantro.com",
"city": "Tibbie",
"state": "NV"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 42,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "820",
"_score": null,
"_source": {
"account_number": 820,
"balance": 1011,
"firstname": "Shepard",
"lastname": "Ramsey",
"age": 24,
"gender": "F",
"address": "806 Village Court",
"employer": "Mantro",
"email": "shepardramsey@mantro.com",
"city": "Tibbie",
"state": "NV"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "924",
"_score": null,
"_source": {
"account_number": 924,
"balance": 3811,
"firstname": "Hilary",
"lastname": "Leonard",
"age": 24,
"gender": "M",
"address": "235 Hegeman Avenue",
"employer": "Metroz",
"email": "hilaryleonard@metroz.com",
"city": "Roosevelt",
"state": "ME"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "819",
"_score": null,
"_source": {
"account_number": 819,
"balance": 3971,
"firstname": "Karyn",
"lastname": "Medina",
"age": 24,
"gender": "F",
"address": "417 Utica Avenue",
"employer": "Qnekt",
"email": "karynmedina@qnekt.com",
"city": "Kerby",
"state": "WY"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "77",
"_score": null,
"_source": {
"account_number": 77,
"balance": 5724,
"firstname": "Byrd",
"lastname": "Conley",
"age": 24,
"gender": "F",
"address": "698 Belmont Avenue",
"employer": "Zidox",
"email": "byrdconley@zidox.com",
"city": "Rockbridge",
"state": "SC"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "493",
"_score": null,
"_source": {
"account_number": 493,
"balance": 5871,
"firstname": "Campbell",
"lastname": "Best",
"age": 24,
"gender": "M",
"address": "297 Friel Place",
"employer": "Fanfare",
"email": "campbellbest@fanfare.com",
"city": "Kidder",
"state": "GA"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "894",
"_score": null,
"_source": {
"account_number": 894,
"balance": 1031,
"firstname": "Tyler",
"lastname": "Fitzgerald",
"age": 32,
"gender": "M",
"address": "787 Meserole Street",
"employer": "Jetsilk",
"email": "tylerfitzgerald@jetsilk.com",
"city": "Woodlands",
"state": "WV"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 52,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "894",
"_score": null,
"_source": {
"account_number": 894,
"balance": 1031,
"firstname": "Tyler",
"lastname": "Fitzgerald",
"age": 32,
"gender": "M",
"address": "787 Meserole Street",
"employer": "Jetsilk",
"email": "tylerfitzgerald@jetsilk.com",
"city": "Woodlands",
"state": "WV"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "402",
"_score": null,
"_source": {
"account_number": 402,
"balance": 1282,
"firstname": "Pacheco",
"lastname": "Rosales",
"age": 32,
"gender": "M",
"address": "538 Pershing Loop",
"employer": "Circum",
"email": "pachecorosales@circum.com",
"city": "Elbert",
"state": "ID"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "735",
"_score": null,
"_source": {
"account_number": 735,
"balance": 3984,
"firstname": "Loraine",
"lastname": "Willis",
"age": 32,
"gender": "F",
"address": "928 Grove Street",
"employer": "Gadtron",
"email": "lorainewillis@gadtron.com",
"city": "Lowgap",
"state": "NY"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "745",
"_score": null,
"_source": {
"account_number": 745,
"balance": 4572,
"firstname": "Jacobs",
"lastname": "Sweeney",
"age": 32,
"gender": "M",
"address": "189 Lott Place",
"employer": "Comtent",
"email": "jacobssweeney@comtent.com",
"city": "Advance",
"state": "NJ"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "173",
"_score": null,
"_source": {
"account_number": 173,
"balance": 5989,
"firstname": "Whitley",
"lastname": "Blevins",
"age": 32,
"gender": "M",
"address": "127 Brooklyn Avenue",
"employer": "Pawnagra",
"email": "whitleyblevins@pawnagra.com",
"city": "Rodanthe",
"state": "ND"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "953",
"_score": null,
"_source": {
"account_number": 953,
"balance": 1110,
"firstname": "Baxter",
"lastname": "Black",
"age": 27,
"gender": "M",
"address": "720 Stillwell Avenue",
"employer": "Uplinx",
"email": "baxterblack@uplinx.com",
"city": "Drummond",
"state": "MN"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 39,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "953",
"_score": null,
"_source": {
"account_number": 953,
"balance": 1110,
"firstname": "Baxter",
"lastname": "Black",
"age": 27,
"gender": "M",
"address": "720 Stillwell Avenue",
"employer": "Uplinx",
"email": "baxterblack@uplinx.com",
"city": "Drummond",
"state": "MN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "123",
"_score": null,
"_source": {
"account_number": 123,
"balance": 3079,
"firstname": "Cleo",
"lastname": "Beach",
"age": 27,
"gender": "F",
"address": "653 Haring Street",
"employer": "Proxsoft",
"email": "cleobeach@proxsoft.com",
"city": "Greensburg",
"state": "ME"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "637",
"_score": null,
"_source": {
"account_number": 637,
"balance": 3169,
"firstname": "Kathy",
"lastname": "Carter",
"age": 27,
"gender": "F",
"address": "410 Jamison Lane",
"employer": "Limage",
"email": "kathycarter@limage.com",
"city": "Ernstville",
"state": "WA"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "528",
"_score": null,
"_source": {
"account_number": 528,
"balance": 4071,
"firstname": "Thompson",
"lastname": "Hoover",
"age": 27,
"gender": "F",
"address": "580 Garden Street",
"employer": "Portalis",
"email": "thompsonhoover@portalis.com",
"city": "Knowlton",
"state": "AL"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "142",
"_score": null,
"_source": {
"account_number": 142,
"balance": 4544,
"firstname": "Vang",
"lastname": "Hughes",
"age": 27,
"gender": "M",
"address": "357 Landis Court",
"employer": "Bolax",
"email": "vanghughes@bolax.com",
"city": "Emerald",
"state": "WY"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "87",
"_score": null,
"_source": {
"account_number": 87,
"balance": 1133,
"firstname": "Hewitt",
"lastname": "Kidd",
"age": 22,
"gender": "M",
"address": "446 Halleck Street",
"employer": "Isologics",
"email": "hewittkidd@isologics.com",
"city": "Coalmont",
"state": "ME"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 51,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "87",
"_score": null,
"_source": {
"account_number": 87,
"balance": 1133,
"firstname": "Hewitt",
"lastname": "Kidd",
"age": 22,
"gender": "M",
"address": "446 Halleck Street",
"employer": "Isologics",
"email": "hewittkidd@isologics.com",
"city": "Coalmont",
"state": "ME"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "411",
"_score": null,
"_source": {
"account_number": 411,
"balance": 1172,
"firstname": "Guzman",
"lastname": "Whitfield",
"age": 22,
"gender": "M",
"address": "181 Perry Terrace",
"employer": "Springbee",
"email": "guzmanwhitfield@springbee.com",
"city": "Balm",
"state": "IN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "159",
"_score": null,
"_source": {
"account_number": 159,
"balance": 1696,
"firstname": "Alvarez",
"lastname": "Mack",
"age": 22,
"gender": "F",
"address": "897 Manor Court",
"employer": "Snorus",
"email": "alvarezmack@snorus.com",
"city": "Rosedale",
"state": "CA"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "220",
"_score": null,
"_source": {
"account_number": 220,
"balance": 3086,
"firstname": "Tania",
"lastname": "Middleton",
"age": 22,
"gender": "F",
"address": "541 Gunther Place",
"employer": "Zerology",
"email": "taniamiddleton@zerology.com",
"city": "Linwood",
"state": "IN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "350",
"_score": null,
"_source": {
"account_number": 350,
"balance": 4267,
"firstname": "Wyatt",
"lastname": "Wise",
"age": 22,
"gender": "F",
"address": "896 Bleecker Street",
"employer": "Rockyard",
"email": "wyattwise@rockyard.com",
"city": "Joes",
"state": "MS"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "749",
"_score": null,
"_source": {
"account_number": 749,
"balance": 1249,
"firstname": "Rush",
"lastname": "Boyle",
"age": 36,
"gender": "M",
"address": "310 Argyle Road",
"employer": "Sportan",
"email": "rushboyle@sportan.com",
"city": "Brady",
"state": "WA"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 52,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "749",
"_score": null,
"_source": {
"account_number": 749,
"balance": 1249,
"firstname": "Rush",
"lastname": "Boyle",
"age": 36,
"gender": "M",
"address": "310 Argyle Road",
"employer": "Sportan",
"email": "rushboyle@sportan.com",
"city": "Brady",
"state": "WA"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "427",
"_score": null,
"_source": {
"account_number": 427,
"balance": 1463,
"firstname": "Rebekah",
"lastname": "Garrison",
"age": 36,
"gender": "F",
"address": "837 Hampton Avenue",
"employer": "Niquent",
"email": "rebekahgarrison@niquent.com",
"city": "Zarephath",
"state": "NY"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "782",
"_score": null,
"_source": {
"account_number": 782,
"balance": 3960,
"firstname": "Maldonado",
"lastname": "Craig",
"age": 36,
"gender": "F",
"address": "345 Myrtle Avenue",
"employer": "Zilencio",
"email": "maldonadocraig@zilencio.com",
"city": "Yukon",
"state": "ID"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "6",
"_score": null,
"_source": {
"account_number": 6,
"balance": 5686,
"firstname": "Hattie",
"lastname": "Bond",
"age": 36,
"gender": "M",
"address": "671 Bristol Street",
"employer": "Netagy",
"email": "hattiebond@netagy.com",
"city": "Dante",
"state": "TN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "170",
"_score": null,
"_source": {
"account_number": 170,
"balance": 6025,
"firstname": "Mann",
"lastname": "Madden",
"age": 36,
"gender": "F",
"address": "161 Radde Place",
"employer": "Farmex",
"email": "mannmadden@farmex.com",
"city": "Thermal",
"state": "LA"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "315",
"_score": null,
"_source": {
"account_number": 315,
"balance": 1314,
"firstname": "Clare",
"lastname": "Morrow",
"age": 33,
"gender": "F",
"address": "728 Madeline Court",
"employer": "Gaptec",
"email": "claremorrow@gaptec.com",
"city": "Mapletown",
"state": "PA"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 50,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "315",
"_score": null,
"_source": {
"account_number": 315,
"balance": 1314,
"firstname": "Clare",
"lastname": "Morrow",
"age": 33,
"gender": "F",
"address": "728 Madeline Court",
"employer": "Gaptec",
"email": "claremorrow@gaptec.com",
"city": "Mapletown",
"state": "PA"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "118",
"_score": null,
"_source": {
"account_number": 118,
"balance": 2223,
"firstname": "Ballard",
"lastname": "Vasquez",
"age": 33,
"gender": "F",
"address": "101 Bush Street",
"employer": "Intergeek",
"email": "ballardvasquez@intergeek.com",
"city": "Century",
"state": "MN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "786",
"_score": null,
"_source": {
"account_number": 786,
"balance": 3024,
"firstname": "Rene",
"lastname": "Vang",
"age": 33,
"gender": "M",
"address": "506 Randolph Street",
"employer": "Isopop",
"email": "renevang@isopop.com",
"city": "Vienna",
"state": "NJ"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "932",
"_score": null,
"_source": {
"account_number": 932,
"balance": 3111,
"firstname": "Summer",
"lastname": "Porter",
"age": 33,
"gender": "F",
"address": "949 Grand Avenue",
"employer": "Multiflex",
"email": "summerporter@multiflex.com",
"city": "Spokane",
"state": "OK"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "587",
"_score": null,
"_source": {
"account_number": 587,
"balance": 3468,
"firstname": "Carly",
"lastname": "Johns",
"age": 33,
"gender": "M",
"address": "390 Noll Street",
"employer": "Gallaxia",
"email": "carlyjohns@gallaxia.com",
"city": "Emison",
"state": "DC"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "348",
"_score": null,
"_source": {
"account_number": 348,
"balance": 1360,
"firstname": "Karina",
"lastname": "Russell",
"age": 37,
"gender": "M",
"address": "797 Moffat Street",
"employer": "Limozen",
"email": "karinarussell@limozen.com",
"city": "Riegelwood",
"state": "RI"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 42,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "348",
"_score": null,
"_source": {
"account_number": 348,
"balance": 1360,
"firstname": "Karina",
"lastname": "Russell",
"age": 37,
"gender": "M",
"address": "797 Moffat Street",
"employer": "Limozen",
"email": "karinarussell@limozen.com",
"city": "Riegelwood",
"state": "RI"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "663",
"_score": null,
"_source": {
"account_number": 663,
"balance": 2456,
"firstname": "Rollins",
"lastname": "Richards",
"age": 37,
"gender": "M",
"address": "129 Sullivan Place",
"employer": "Geostele",
"email": "rollinsrichards@geostele.com",
"city": "Morgandale",
"state": "FL"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "699",
"_score": null,
"_source": {
"account_number": 699,
"balance": 4156,
"firstname": "Gallagher",
"lastname": "Marshall",
"age": 37,
"gender": "F",
"address": "648 Clifford Place",
"employer": "Exiand",
"email": "gallaghermarshall@exiand.com",
"city": "Belfair",
"state": "KY"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "161",
"_score": null,
"_source": {
"account_number": 161,
"balance": 4659,
"firstname": "Doreen",
"lastname": "Randall",
"age": 37,
"gender": "F",
"address": "178 Court Street",
"employer": "Calcula",
"email": "doreenrandall@calcula.com",
"city": "Belmont",
"state": "TX"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "258",
"_score": null,
"_source": {
"account_number": 258,
"balance": 5712,
"firstname": "Lindsey",
"lastname": "Hawkins",
"age": 37,
"gender": "M",
"address": "706 Frost Street",
"employer": "Enormo",
"email": "lindseyhawkins@enormo.com",
"city": "Gardners",
"state": "AK"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "490",
"_score": null,
"_source": {
"account_number": 490,
"balance": 1447,
"firstname": "Strong",
"lastname": "Hendrix",
"age": 26,
"gender": "F",
"address": "134 Beach Place",
"employer": "Duoflex",
"email": "stronghendrix@duoflex.com",
"city": "Allentown",
"state": "ND"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 59,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "490",
"_score": null,
"_source": {
"account_number": 490,
"balance": 1447,
"firstname": "Strong",
"lastname": "Hendrix",
"age": 26,
"gender": "F",
"address": "134 Beach Place",
"employer": "Duoflex",
"email": "stronghendrix@duoflex.com",
"city": "Allentown",
"state": "ND"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "280",
"_score": null,
"_source": {
"account_number": 280,
"balance": 3380,
"firstname": "Vilma",
"lastname": "Shields",
"age": 26,
"gender": "F",
"address": "133 Berriman Street",
"employer": "Applidec",
"email": "vilmashields@applidec.com",
"city": "Adamstown",
"state": "ME"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "596",
"_score": null,
"_source": {
"account_number": 596,
"balance": 4063,
"firstname": "Letitia",
"lastname": "Walker",
"age": 26,
"gender": "F",
"address": "963 Vanderveer Place",
"employer": "Zizzle",
"email": "letitiawalker@zizzle.com",
"city": "Rossmore",
"state": "ID"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "780",
"_score": null,
"_source": {
"account_number": 780,
"balance": 4682,
"firstname": "Maryanne",
"lastname": "Hendricks",
"age": 26,
"gender": "F",
"address": "709 Wolcott Street",
"employer": "Sarasonic",
"email": "maryannehendricks@sarasonic.com",
"city": "Santel",
"state": "NH"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "405",
"_score": null,
"_source": {
"account_number": 405,
"balance": 5679,
"firstname": "Strickland",
"lastname": "Fuller",
"age": 26,
"gender": "M",
"address": "990 Concord Street",
"employer": "Digique",
"email": "stricklandfuller@digique.com",
"city": "Southmont",
"state": "NV"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "174",
"_score": null,
"_source": {
"account_number": 174,
"balance": 1464,
"firstname": "Gamble",
"lastname": "Pierce",
"age": 23,
"gender": "F",
"address": "650 Eagle Street",
"employer": "Matrixity",
"email": "gamblepierce@matrixity.com",
"city": "Abiquiu",
"state": "OR"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 42,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "174",
"_score": null,
"_source": {
"account_number": 174,
"balance": 1464,
"firstname": "Gamble",
"lastname": "Pierce",
"age": 23,
"gender": "F",
"address": "650 Eagle Street",
"employer": "Matrixity",
"email": "gamblepierce@matrixity.com",
"city": "Abiquiu",
"state": "OR"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "110",
"_score": null,
"_source": {
"account_number": 110,
"balance": 4850,
"firstname": "Daphne",
"lastname": "Byrd",
"age": 23,
"gender": "F",
"address": "239 Conover Street",
"employer": "Freakin",
"email": "daphnebyrd@freakin.com",
"city": "Taft",
"state": "MN"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "900",
"_score": null,
"_source": {
"account_number": 900,
"balance": 6124,
"firstname": "Gonzalez",
"lastname": "Watson",
"age": 23,
"gender": "M",
"address": "624 Sullivan Street",
"employer": "Marvane",
"email": "gonzalezwatson@marvane.com",
"city": "Wikieup",
"state": "IL"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "443",
"_score": null,
"_source": {
"account_number": 443,
"balance": 7588,
"firstname": "Huff",
"lastname": "Thomas",
"age": 23,
"gender": "M",
"address": "538 Erskine Loop",
"employer": "Accufarm",
"email": "huffthomas@accufarm.com",
"city": "Corinne",
"state": "AL"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "643",
"_score": null,
"_source": {
"account_number": 643,
"balance": 8057,
"firstname": "Hendricks",
"lastname": "Stokes",
"age": 23,
"gender": "F",
"address": "142 Barbey Street",
"employer": "Remotion",
"email": "hendricksstokes@remotion.com",
"city": "Lewis",
"state": "MA"
},
"sort": [
]
}
]
}
}
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "111",
"_score": null,
"_source": {
"account_number": 111,
"balance": 1481,
"firstname": "Traci",
"lastname": "Allison",
"age": 35,
"gender": "M",
"address": "922 Bryant Street",
"employer": "Enjola",
"email": "traciallison@enjola.com",
"city": "Robinette",
"state": "OR"
},
"fields": {
"age": [
]
},
"sort": [
],
"inner_hits": {
"details": {
"hits": {
"total": 52,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "111",
"_score": null,
"_source": {
"account_number": 111,
"balance": 1481,
"firstname": "Traci",
"lastname": "Allison",
"age": 35,
"gender": "M",
"address": "922 Bryant Street",
"employer": "Enjola",
"email": "traciallison@enjola.com",
"city": "Robinette",
"state": "OR"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "417",
"_score": null,
"_source": {
"account_number": 417,
"balance": 1788,
"firstname": "Wheeler",
"lastname": "Ayers",
"age": 35,
"gender": "F",
"address": "677 Hope Street",
"employer": "Fortean",
"email": "wheelerayers@fortean.com",
"city": "Ironton",
"state": "PA"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "984",
"_score": null,
"_source": {
"account_number": 984,
"balance": 1904,
"firstname": "Viola",
"lastname": "Crawford",
"age": 35,
"gender": "F",
"address": "354 Linwood Street",
"employer": "Ginkle",
"email": "violacrawford@ginkle.com",
"city": "Witmer",
"state": "AR"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "527",
"_score": null,
"_source": {
"account_number": 527,
"balance": 2028,
"firstname": "Carver",
"lastname": "Peters",
"age": 35,
"gender": "M",
"address": "816 Victor Road",
"employer": "Housedown",
"email": "carverpeters@housedown.com",
"city": "Nadine",
"state": "MD"
},
"sort": [
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "266",
"_score": null,
"_source": {
"account_number": 266,
"balance": 2777,
"firstname": "Monique",
"lastname": "Conner",
"age": 35,
"gender": "F",
"address": "489 Metrotech Courtr",
"employer": "Flotonic",
"email": "moniqueconner@flotonic.com",
"city": "Retsof",
"state": "MD"
},
"sort": [
]
}
]
}
}
}
}
]
}
}
在inner_hits 中返回多個角度的組內topN
GET /twitter/_search
{
"query": {
"match": {
"message": "elasticsearch"
}
},
"collapse" : {
"field" : "user",
"inner_hits": [
{
"name": "most_liked",
"size": 3,
"sort": ["likes"]
},
{
"name": "most_recent",
"size": 3,
"sort": [{ "date": "asc" }]
}
]
},
"sort": ["likes"]
}
說明:
most_liked:最像
most_recent:最近一段時間的
6.3.1 分頁
from and size
GET /_search
{
"from" : 0, "size" : 10,
"query" : {
"term" : { "user" : "kimchy" }
}
}
注意:搜索請求耗用的堆內存和時間與 from + size 大小成正比。分頁越深耗用越大,為了不因分頁導致OOM或嚴重影響性能,ES中規定from + size 不能大於索引setting參數 index.max_result_window 的值,默認值為 10,000。
需要深度分頁, 不受index.max_result_window 限制,怎么辦?
Search after 在指定文檔后取文檔, 可用於深度分頁
首次查詢第一頁
GET twitter/_search
{
"size": 10,
"query": {
"match" : {
"title" : "elasticsearch"
}
},
"sort": [
{"date": "asc"},
{"_id": "desc"}
]
}
后續頁的查詢
GET twitter/_search
{
"size": 10,
"query": {
"match" : {
"title" : "elasticsearch"
}
},
"search_after": [1463538857, "654323"],
"sort": [
{"date": "asc"},
{"_id": "desc"}
]
}
注意:使用search_after,要求查詢必須指定排序,並且這個排序組合值每個文檔唯一(最好排序中包含_id字段)。 search_after的值用的就是這個排序值。 用search_after時 from 只能為0、-1。
6.3.2 高亮
准備數據:
PUT /hl_test/_doc/1
{
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
查詢高亮數據
GET /hl_test/_search
{
"query": {
"match": {
"title": "lucene"
}
},
"highlight": {
"fields": {
"title": {},
"content": {}
}
}
}
查詢結果:
{
"took": 113,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "hl_test",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
},
"highlight": {
"title": [
"<em>lucene</em> solr and elasticsearch"
]
}
}
]
}
}
多字段高亮
GET /hl_test/_search
{
"query": {
"match": {
"title": "lucene"
}
},
"highlight": {
"require_field_match": false,
"fields": {
"title": {},
"content": {}
}
}
}
查詢結果:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "hl_test",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
},
"highlight": {
"title": [
"<em>lucene</em> solr and elasticsearch"
],
"content": [
"<em>lucene</em> solr and elasticsearch for search"
]
}
}
]
}
}
說明:
高亮結果在返回的每個文檔中以hightlight節點給出
指定高亮標簽
GET /hl_test/_search
{
"query": {
"match": {
"title": "lucene"
}
},
"highlight": {
"require_field_match": false,
"fields": {
"title": {
"pre_tags":["<strong>"],
"post_tags": ["</strong>"]
},
"content": {}
}
}
}
查詢結果:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "hl_test",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
},
"highlight": {
"title": [
"<strong>lucene</strong> solr and elasticsearch"
],
"content": [
"<em>lucene</em> solr and elasticsearch for search"
]
}
}
]
}
}
高亮的詳細設置請參考官網:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html
6.3.3 Profile 為了調試、優化
對於執行緩慢的查詢,我們很想知道它為什么慢,時間都耗在哪了,可以在查詢上加入上 profile 來獲得詳細的執行步驟、耗時信息。
GET /twitter/_search
{
"profile": true,
"query" : {
"match" : { "message" : "some number" }
}
}
信息的說明請參考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html
7. count api 查詢數量
PUT /twitter/_doc/1?refresh
{
"user": "kimchy"
}
GET /twitter/_doc/_count?q=user:kimchy
GET /twitter/_doc/_count
{
"query" : {
"term" : { "user" : "kimchy" }
}
}
結果說明:
{
"count" : 1,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
}
}
8. validate api
用來檢查我們的查詢是否正確,以及查看底層生成查詢是怎樣的
GET twitter/_validate/query?q=user:foo
8.1 校驗查詢
GET twitter/_doc/_validate/query
{
"query": {
"query_string": {
"query": "post_date:foo",
"lenient": false
}
}
}
查詢結果:
{
"valid": true,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
}
}
8.2 獲得查詢解釋
GET twitter/_doc/_validate/query?explain=true
{
"query": {
"query_string": {
"query": "post_date:foo",
"lenient": false
}
}
}
查詢結果
{
"valid": true,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"explanations": [
{
"index": "twitter",
"valid": true,
"explanation": """+MatchNoDocsQuery("unmapped field [post_date]") #MatchNoDocsQuery("Type list does not contain the index type")"""
}
]
}
8.3 用rewrite獲得比explain 更詳細的解釋
GET twitter/_doc/_validate/query?rewrite=true
{
"query": {
"more_like_this": {
"like": {
"_id": "2"
},
"boost_terms": 1
}
}
}
查詢結果:
{
"valid": true,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"explanations": [
{
"index": "twitter",
"valid": true,
"explanation": """+(MatchNoDocsQuery("empty BooleanQuery") -ConstantScore(MatchNoDocsQuery("empty BooleanQuery"))) #MatchNoDocsQuery("Type list does not contain the index type")"""
}
]
}
8.4 獲得所有分片上的查詢解釋
GET twitter/_doc/_validate/query?rewrite=true&all_shards=true
{
"query": {
"match": {
"user": {
"query": "kimchy",
"fuzziness": "auto"
}
}
}
}
查詢結果:
{
"valid": true,
"_shards": {
"total": 3,
"successful": 3,
"failed": 0
},
"explanations": [
{
"index": "twitter",
"shard": 0,
"valid": true,
"explanation": """MatchNoDocsQuery("unmapped field [user]")"""
},
{
"index": "twitter",
"shard": 1,
"valid": true,
"explanation": """MatchNoDocsQuery("unmapped field [user]")"""
},
{
"index": "twitter",
"shard": 2,
"valid": true,
"explanation": """MatchNoDocsQuery("unmapped field [user]")"""
}
]
}
官網鏈接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-validate.html
9. Explain api
獲得某個查詢的評分解釋,及某個文檔是否被這個查詢命中
GET /twitter/_doc/0/_explain
{
"query" : {
"match" : { "message" : "elasticsearch" }
}
}
官網鏈接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
10. Search Shards API
讓我們可以了解可執行查詢的索引分片節點情況
GET /twitter/_search_shards
查詢結果:
{
"nodes": {
"qkmtovyLRPWjXcfDTryNwA": {
"name": "qkmtovy",
"ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
"transport_address": "127.0.0.1:9300",
"attributes": {}
}
},
"indices": {
"twitter": {}
},
"shards": [
[
{
"state": "STARTED",
"primary": true,
"node": "qkmtovyLRPWjXcfDTryNwA",
"relocating_node": null,
"shard": 0,
"index": "twitter",
"allocation_id": {
"id": "3Yf6lOjyQja_v4yP_gL8qA"
}
}
],
[
{
"state": "STARTED",
"primary": true,
"node": "qkmtovyLRPWjXcfDTryNwA",
"relocating_node": null,
"shard": 1,
"index": "twitter",
"allocation_id": {
"id": "8S88pnUkSSy8kiCcwBgb9Q"
}
}
],
[
{
"state": "STARTED",
"primary": true,
"node": "qkmtovyLRPWjXcfDTryNwA",
"relocating_node": null,
"shard": 2,
"index": "twitter",
"allocation_id": {
"id": "_uIup55LQZKaltUfuh5aFA"
}
}
]
]
}
想知道指定routing值的查詢將在哪些分片節點上執行
GET /twitter/_search_shards?routing=foo,baz
查詢結果:
{
"nodes": {
"qkmtovyLRPWjXcfDTryNwA": {
"name": "qkmtovy",
"ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
"transport_address": "127.0.0.1:9300",
"attributes": {}
}
},
"indices": {
"twitter": {}
},
"shards": [
[
{
"state": "STARTED",
"primary": true,
"node": "qkmtovyLRPWjXcfDTryNwA",
"relocating_node": null,
"shard": 1,
"index": "twitter",
"allocation_id": {
"id": "8S88pnUkSSy8kiCcwBgb9Q"
}
}
]
]
}
11. Search Template 查詢模板
注冊一個模板
POST _scripts/<templatename>
{
"script": {
"lang": "mustache",
"source": {
"query": {
"match": {
"title": "{{query_string}}"
}
}
}
}
}
使用模板進行查詢
GET _search/template
{
"id": "<templateName>",
"params": {
"query_string": "search for these words"
}
}
查詢結果:
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 38,
"successful": 38,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
詳細了解請參考官網:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html
二、Query DSL
官網介紹鏈接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
Query DSL 介紹
1. DSL是什么?
Domain Specific Language:領域特定語言
Elasticsearch基於JSON提供完整的查詢DSL來定義查詢。
一個查詢可由兩部分字句構成:
Leaf query clauses 葉子查詢字句
Leaf query clauses 在指定的字段上查詢指定的值, 如:match, term or range queries. 葉子字句可以單獨使用.
Compound query clauses 復合查詢字句
以邏輯方式組合多個葉子、復合查詢為一個查詢
2. Query and filter context
一個查詢字句的行為取決於它是用在query context 還是 filter context 中 。
Query context 查詢上下文
用在查詢上下文中的字句回答“這個文檔有多匹配這個查詢?”。除了決定文檔是否匹配,字句匹配的文檔還會計算一個字句評分,來評定文檔有多匹配。查詢上下文由 query 元素表示。
Filter context 過濾上下文
過濾上下文由 filter 元素或 bool 中的 must not 表示。用在過濾上下文中的字句回答“這個文檔是否匹配這個查詢?”,不參與相關性評分。
被頻繁使用的過濾器將被ES自動緩存,來提高查詢性能。
示例:
GET /_search
{
<!--查詢 -->
"query": {
"bool": {
"must": [
{ "match": { "title": "Search" }},
{ "match": { "content": "Elasticsearch" }}
],
<!--過濾 -->
"filter": [
{ "term": { "status": "published" }},
{ "range": { "publish_date": { "gte": "2015-01-01" }}}
]
}
}
}
說明:查詢和過濾都是對所有文檔進行查詢,最后兩個結果取交集
提示:在查詢上下文中使用查詢子句來表示影響匹配文檔得分的條件,並在過濾上下文中使用所有其他查詢子句。
查詢分類介紹
1. Match all query 查詢所有
GET /_search
{
"query": {
"match_all": {}
}
}
相反,什么都不查
GET /_search
{
"query": {
"match_none": {}
}
}
2. Full text querys
全文查詢,用於對分詞的字段進行搜索。會用查詢字段的分詞器對查詢的文本進行分詞生成查詢。可用於短語查詢、模糊查詢、前綴查詢、臨近查詢等查詢場景
官網鏈接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html
3. match query
全文查詢的標准查詢,它可以對一個字段進行模糊、短語查詢。 match queries 接收 text/numerics/dates, 對它們進行分詞分析, 再組織成一個boolean查詢。可通過operator 指定bool組合操作(or、and 默認是 or ), 以及minimum_should_match 指定至少需多少個should(or)字句需滿足。還可用ananlyzer指定查詢用的特殊分析器。
GET /_search
{
"query": {
"match" : {
"message" : "this is a test"
}
}
}
說明:message是字段名
官網鏈接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
示例:
構造索引和數據:
PUT /ftq/_doc/1
{
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
PUT /ftq/_doc/2
{
"title": "java spring boot",
"content": "lucene is writerd by java"
}
執行查詢1
GET ftq/_doc/_validate/query?rewrite=true
{
"query": {
"match": {
"title": "lucene java"
}
}
}
查詢結果1:
{
"valid": true,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"explanations": [
{
"index": "ftq",
"valid": true,
"explanation": "title:lucene title:java"
}
]
}
執行查詢2:
GET ftq/_search
{
"query": {
"match": {
"title": "lucene java"
}
}
}
查詢結果2:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "2",
"_score": 0.2876821,
"_source": {
"title": "java spring boot",
"content": "lucene is writerd by java"
}
},
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
執行查詢3:指定操作符
GET ftq/_search
{
"query": {
"match": {
"title": {
"query": "lucene java",
"operator": "and"
}
}
}
}
查詢結果3:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
模糊查詢,最大編輯數為2
GET ftq/_search
{
"query": {
"match": {
"title": {
"query": "ucen elatic",
"fuzziness": 2
}
}
}
}
模糊查詢結果:
{
"took": 280,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.14384104,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.14384104,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
指定最少需滿足兩個詞匹配
GET ftq/_search
{
"query": {
"match": {
"content": {
"query": "ucen elatic java",
"fuzziness": 2,
"minimum_should_match": 2
}
}
}
}
查詢結果:
{
"took": 19,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.43152314,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "2",
"_score": 0.43152314,
"_source": {
"title": "java spring boot",
"content": "lucene is writerd by java"
}
}
]
}
}
可用max_expansions 指定模糊匹配的最大詞項數,默認是50。比如:反向索引中有 100 個詞項與 ucen 模糊匹配,只選用前50 個。
4. match phrase query
match_phrase 查詢用來對一個字段進行短語查詢,可以指定 analyzer、slop移動因子。
對字段進行短語查詢1:
GET ftq/_search
{
"query": {
"match_phrase": {
"title": "lucene solr"
}
}
}
結果1:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.5753642,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.5753642,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
對字段進行短語查詢2:
GET ftq/_search
{
"query": {
"match_phrase": {
"title": "lucene elasticsearch"
}
}
}
結果2:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
對查詢指定移動因子:
GET ftq/_search
{
"query": {
"match_phrase": {
"title": {
"query": "lucene elasticsearch",
"slop": 2
}
}
}
}
查詢結果:
{
"took": 2174,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.27517417,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.27517417,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
5. match phrase prefix query
match_phrase_prefix 在 match_phrase 的基礎上支持對短語的最后一個詞進行前綴匹配
GET /_search
{
"query": {
"match_phrase_prefix" : {
"message" : "quick brown f"
}
}
}
指定前綴匹配選用的最大詞項數量
GET /_search
{
"query": {
"match_phrase_prefix" : {
"message" : {
"query" : "quick brown f",
"max_expansions" : 10
}
}
}
}
6. Multi match query
如果你需要在多個字段上進行文本搜索,可用multi_match 。 multi_match在 match的基礎上支持對多個字段進行文本查詢。
查詢1:
GET ftq/_search
{
"query": {
"multi_match" : {
"query": "lucene java",
"fields": [ "title", "content" ]
}
}
}
結果1:
{
"took": 1973,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.5753642,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "2",
"_score": 0.5753642,
"_source": {
"title": "java spring boot",
"content": "lucene is writerd by java"
}
},
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
查詢2:字段通配符查詢
GET ftq/_search
{
"query": {
"multi_match" : {
"query": "lucene java",
"fields": [ "title", "cont*" ]
}
}
}
結果2:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.5753642,
"hits": [
{
"_index": "ftq",
"_type": "_doc",
"_id": "2",
"_score": 0.5753642,
"_source": {
"title": "java spring boot",
"content": "lucene is writerd by java"
}
},
{
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
}
}
]
}
}
查詢3:給字段的相關性評分加權重
GET ftq/_search?explain=true
{
"query": {
"multi_match" : {
"query": "lucene elastic",
"fields": [ "title^5", "content" ]
}
}
}
結果3:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.4384104,
"hits": [
{
"_shard": "[ftq][3]",
"_node": "qkmtovyLRPWjXcfDTryNwA",
"_index": "ftq",
"_type": "_doc",
"_id": "1",
"_score": 1.4384104,
"_source": {
"title": "lucene solr and elasticsearch",
"content": "lucene solr and elasticsearch for search"
},
"_explanation": {
"value": 1.4384104,
"description": "max of:",
"details": [
{
"value": 1.4384104,
"description": "sum of:",
"details": [
{
"value": 1.4384104,
"description": "weight(title:lucene in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 1.4384104,
"description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
"details": [
{
"value": 5,
"description": "boost",
"details": []
},
{
"value": 0.2876821,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": 1,
"description": "docFreq",
"details": []
},
{
"value": 1,
"description": "docCount",
"details": []
}
]
},
{
"value": 1,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": 1,
"description": "termFreq=1.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 4,
"description": "avgFieldLength",
"details": []
},
{
"value": 4,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
},
{
"value": 0.2876821,
"description": "sum of:",
"details": [
{
"value": 0.2876821,
"description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 0.2876821,
"description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
"details": [
{
"value": 0.2876821,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": 1,
"description": "docFreq",
"details": []
},
{
"value": 1,
"description": "docCount",
"details": []
}
]
},
{
"value": 1,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": 1,
"description": "termFreq=1.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 6,
"description": "avgFieldLength",
"details": []
},
{
"value": 6,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
}
]
}
},
{
"_shard": "[ftq][2]",
"_node": "qkmtovyLRPWjXcfDTryNwA",
"_index": "ftq",
"_type": "_doc",
"_id": "2",
"_score": 0.2876821,
"_source": {
"title": "java spring boot",
"content": "lucene is writerd by java"
},
"_explanation": {
"value": 0.2876821,
"description": "max of:",
"details": [
{
"value": 0.2876821,
"description": "sum of:",
"details": [
{
"value": 0.2876821,
"description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
"details": [
{
"value": 0.2876821,
"description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
"details": [
{
"value": 0.2876821,
"description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
"details": [
{
"value": 1,
"description": "docFreq",
"details": []
},
{
"value": 1,
"description": "docCount",
"details": []
}
]
},
{
"value": 1,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": 1,
"description": "termFreq=1.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 5,
"description": "avgFieldLength",
"details": []
},
{
"value": 5,
"description": "fieldLength",
"details": []
}
]
}
]
}
]
}
]
}
]
}
}
]
}
}
7. Common terms query
common 常用詞查詢
問1、什么是停用詞?索引時做停用詞處理的目的是什么?
不再使用的詞,做停用詞處理的目的是提高索引的效率,去掉不需要的索引操作,即停用詞不需要索引
問2、如果在索引時應用停用詞處理,下面的兩個查詢會查詢什么詞項?
the brown fox—— brown fox
not happy——happy
問3、索引時應用停用詞處理對搜索精度是否有影響?如果不做停用詞處理又會有什么影響?如何協調這兩個問題?如何保證搜索的精確度又兼顧搜索性能?
索引時應用停用詞處理對搜索精度有影響,不做停用詞處理又會影響索引的效率,要協調這兩個問題就必須要使用tf-idf 相關性計算模型
7.1 tf-idf 相關性計算模型簡介
tf:term frequency 詞頻 :指一個詞在一篇文檔中出現的頻率。
如“世界杯”在文檔A中出現3次,那么可以定義“世界杯”在文檔A中的詞頻為3。請問在一篇3000字的文章中出現“世界杯”3次和一篇150字的文章中出現3詞,哪篇文章更是與“世界杯”有關的。也就是說,簡單用出現次數作為頻率不夠准確。那就用占比來表示:
問:tf值越大是否就一定說明這個詞更相關?
不是,出現太多了說明不重要
說明:tf的計算不一定非是這樣的,可以定義不同的計算方式。
df:document frequency 詞的文檔頻率 :指包含某個詞的文檔數(有多少文檔中包含這個詞)。 df越大的詞越常見,哪些詞會是高頻詞?
問1:詞的df值越大說明這個詞在這個文檔集中是越重要還是越不重要?
越不重要
問2:詞t的tf高,在文檔集中的重要性也高,是否說明文檔與該詞越相關?舉例:整個文檔集中只有3篇文檔中有“世界杯”,文檔A中就出現了“世界杯”好幾次。
不能說明文檔與該詞越相關
問3:如何用數值體現詞t在文檔集中的重要性?df可以嗎?
不可以
idf:inverse document frequency 詞的逆文檔頻率 :用來表示詞在文檔集中的重要性。文檔總數/ df ,df越小,詞越重要,這個值會很大,那就對它取個自然對數,將值映射到一個較小的取值范圍。
說明: +1 是為了避免除0(即詞t在文檔集中未出現的情況)
tf-idf 相關性性計算模型:tf-idf t = tf t,d * idf t
說明: tf-idf 相關性性計算模型的值為詞頻( tf t,d)乘以詞的逆文檔頻率(idf t)
7.2 Common terms query
common 區分常用(高頻)詞查詢讓我們可以通過cutoff_frequency來指定一個分界文檔頻率值,將搜索文本中的詞分為高頻詞和低頻詞,低頻詞的重要性高於高頻詞,先對低頻詞進行搜索並計算所有匹配文檔相關性得分;然后再搜索和高頻詞匹配的文檔,這會搜到很多文檔,但只對和低頻詞重疊的文檔進行相關性得分計算(這可保證搜索精確度,同時大大提高搜索性能),和低頻詞累加作為文檔得分。實際執行的搜索是 必須包含低頻詞 + 或包含高頻詞。
思考:這樣處理下,如果用戶輸入的都是高頻詞如 “to be or not to be”結果會是怎樣的?你希望是怎樣的?
優化:如果都是高頻詞,那就對這些詞進行and 查詢。
進一步優化:讓用戶可以自己定對高頻詞做and/or 操作,自己定對低頻詞進行and/or 操作;或指定最少得多少個同時匹配
示例1:
GET /_search
{
"query": {
"common": {
"message": {
"query": "this is bonsai cool",
"cutoff_frequency": 0.001
}
}
}
}
說明:
cutoff_frequency : 值大於1表示文檔數,0-1.0表示占比。 此處界定 文檔頻率大於 0.1%的詞為高頻詞。
示例2:
GET /_search
{
"query": {
"common": {
"body": {
"query": "nelly the elephant as a cartoon",
"cutoff_frequency": 0.001,
"low_freq_operator": "and"
}
}
}
}
說明:low_freq_operator指定對低頻詞做與操作
可用參數:minimum_should_match (high_freq, low_freq), low_freq_operator (default “or”) and high_freq_operator (default “or”)、 boost and analyzer
示例3:
GET /_search
{
"query": {
"common": {
"body": {
"query": "nelly the elephant as a cartoon",
"cutoff_frequency": 0.001,
"minimum_should_match": 2
}
}
}
}
示例4:
GET /_search
{
"query": {
"common": {
"body": {
"query": "nelly the elephant not as a cartoon",
"cutoff_frequency": 0.001,
"minimum_should_match": {
"low_freq" : 2,
"high_freq" : 3
}
}
}
}
}
示例5:
8. Query string query
query_string 查詢,讓我們可以直接用lucene查詢語法寫一個查詢串進行查詢,ES中接到請求后,通過查詢解析器解析查詢串生成對應的查詢。使用它要求掌握lucene的查詢語法。
示例1:指定單個字段查詢
GET /_search
{
"query": {
"query_string" : {
"default_field" : "content",
"query" : "this AND that OR thus"
}
}
}
示例2:指定多字段通配符查詢
GET /_search
{
"query": {
"query_string" : {
"fields" : ["content", "name.*^5"],
"query" : "this AND that OR thus"
}
}
}
可與query同用的參數,如 default_field、fields,及query 串的語法請參考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
9. 查詢描述規則語法(查詢解析語法)
Term 詞項:
單個詞項的表示: 電腦
短語的表示: "聯想筆記本電腦"
Field 字段:
字段名:
示例: name:“聯想筆記本電腦” AND type:電腦
如果name是默認字段,則可寫成: “聯想筆記本電腦” AND type:電腦
如果查詢串是:type:電腦 計算機 手機
注意:只有第一個是type的值,后兩個則是使用默認字段。
Term Modifiers 詞項修飾符:
10. Simple Query string query
simple_query_string 查同 query_string 查詢一樣用lucene查詢語法寫查詢串,較query_string不同的地方:更小的語法集;查詢串有錯誤,它會忽略錯誤的部分,不拋出錯誤。更適合給用戶使用。
示例:
GET /_search
{
"query": {
"simple_query_string" : {
"query": "\"fried eggs\" +(eggplant | potato) -frittata",
"fields": ["title^5", "body"],
"default_operator": "and"
}
}
}
語法請參考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html
11. Term level querys
官網鏈接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html
11.1 Term query
term 查詢用於查詢指定字段包含某個詞項的文檔。
示例1:
POST _search
{
"query": {
"term" : { "user" : "Kimchy" }
}
}
示例2:加權重
GET _search
{
"query": {
"bool": {
"should": [
{
"term": {
"status": {
"value": "urgent",
"boost": 2
}
}
},
{
"term": {
"status": "normal"
}
}
]
}
}
}
11.2 Terms query
terms 查詢用於查詢指定字段包含某些詞項的文檔。
GET /_search
{
"query": {
"terms" : { "user" : ["kimchy", "elasticsearch"]}
}
}
Terms 查詢支持嵌套查詢的方式來獲得查詢詞項,相當於 in (select term from other)
示例1:Terms query 嵌套查詢示例
PUT /users/_doc/2
{
"followers" : ["1", "3"]
}
PUT /tweets/_doc/1
{
"user" : "1"
}
GET /tweets/_search
{
"query": {
"terms": {
"user": {
"index": "users",
"type": "_doc",
"id": "2",
"path": "followers"
}
}
}
}
查詢結果:
{
"took": 14,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "tweets",
"_type": "_doc",
"_id": "1",
"_score": 1,
"_source": {
"user": "1"
}
}
]
}
}
嵌套查詢可用參數說明:
11.3 range query
范圍查詢示例1:
GET _search
{
"query": {
"range" : {
"age" : {
"gte" : 10,
"lte" : 20,
"boost" : 2.0
}
}
}
}
范圍查詢示例2:
GET _search
{
"query": {
"range" : {
"date" : {
"gte" : "now-1d/d",
"lt" : "now/d"
}
}
}
}
范圍查詢示例3:
GET _search
{
"query": {
"range" : {
"born" : {
"gte": "01/01/2012",
"lte": "2013",
"format": "dd/MM/yyyy||yyyy"
}
}
}
}
范圍查詢參數說明:
范圍查詢時間舍入 ||說明:
時間數學計算規則請參考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#date-math
11.4 exists query
查詢指定字段值不為空的文檔。相當 SQL 中的 column is not null
GET /_search
{
"query": {
"exists" : { "field" : "user" }
}
}
查詢指定字段值為空的文檔
GET /_search
{
"query": {
"bool": {
"must_not": {
"exists": {
"field": "user"
}
}
}
}
}
11.5 prefix query 詞項前綴查詢
示例1:
GET /_search
{ "query": {
"prefix" : { "user" : "ki" }
}
}
示例2:加權
GET /_search
{ "query": {
"prefix" : { "user" : { "value" : "ki", "boost" : 2.0 } }
}
}
11.6 wildcard query 通配符查詢: ? *
示例1:
GET /_search
{
"query": {
"wildcard" : { "user" : "ki*y" }
}
}
示例2:加權
GET /_search
{
"query": {
"wildcard": {
"user": {
"value": "ki*y",
"boost": 2
}
}
}}
11.7 regexp query 正則查詢
示例1:
GET /_search
{
"query": {
"regexp":{
"name.first": "s.*y"
}
}
}
示例2:加權
GET /_search
{
"query": {
"regexp":{
"name.first":{
"value":"s.*y",
"boost":1.2
}
}
}
}
正則語法請參考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax
11.8 fuzzy query 模糊查詢
示例1:
GET /_search
{
"query": {
"fuzzy" : { "user" : "ki" }
}
}
示例2:
GET /_search
{
"query": {
"fuzzy" : {
"user" : {
"value": "ki",
"boost": 1.0,
"fuzziness": 2,
"prefix_length": 0,
"max_expansions": 100
}
}
}
}
11.9 type query mapping type 查詢
GET /_search
{
"query": {
"type" : {
"value" : "_doc"
}
}
}
11.10 ids query 根據文檔id查詢
GET /_search
{
"query": {
"ids" : {
"type" : "_doc",
"values" : ["1", "4", "100"]
}
}
}
12. Compound querys 復合查詢
官網鏈接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/compound-queries.html
12.1 Constant Score query
用來包裝另一個查詢,將查詢匹配的文檔的評分設為一個常值。
GET /_search
{
"query": {
"constant_score" : {
"filter" : {
"term" : { "user" : "kimchy"}
},
"boost" : 1.2
}
}
}
12.2 Bool query
Bool 查詢用bool操作來組合多個查詢字句為一個查詢。 可用的關鍵字:
示例:
POST _search
{
"query": {
"bool" : {
"must" : {
"term" : { "user" : "kimchy" }
},
"filter": {
"term" : { "tag" : "tech" }
},
"must_not" : {
"range" : {
"age" : { "gte" : 10, "lte" : 20 }
}
},
"should" : [
{ "term" : { "tag" : "wow" } },
{ "term" : { "tag" : "elasticsearch" } }
],
"minimum_should_match" : 1,
"boost" : 1.0
}
}
}
---------------------