Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A)
, where A
is a run-length encoding of some sequence. More specifically, for all even i
, A[i]
tells us the number of times that the non-negative integer value A[i+1]
is repeated in the sequence.
The iterator supports one function: next(int n)
, which exhausts the next n
elements (n >= 1
) and returns the last element exhausted in this way. If there is no element left to exhaust, next
returns -1
instead.
For example, we start with A = [3,8,0,9,2,5]
, which is a run-length encoding of the sequence [8,8,8,5,5]
. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]]
Output: [null,8,8,5,-1]
Explanation:
RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]).
This maps to the sequence [8,8,8,5,5].
RLEIterator.next is then called 4 times:
.next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
.next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
.next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
.next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5,
but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length
is an even integer.0 <= A[i] <= 10^9
- There are at most
1000
calls toRLEIterator.next(int n)
per test case. - Each call to
RLEIterator.next(int n)
will have1 <= n <= 10^9
.
這道題給了我們一種 Run-Length Encoded 的數組,就是每兩個數字組成一個數字對兒,前一個數字表示后面的一個數字重復出現的次數。然后有一個 next 函數,讓我們返回數組的第n個數字,題目中給的例子也很好的說明了題意。那么最暴力的方法肯定是直接還原整個數組,然后直接用坐標n去取數,但是直覺告訴我這種方法會跪,而且估計是 Memory Limit Exceeded 之類的。所以博主最先想到的是將每個數字對兒抽離出來,放到一個新的數組中。這樣我們就只要遍歷這個只有數字對兒的數組,當出現次數是0的時候,直接跳過當前數字對兒。若出現次數大於等於n,那么現將次數減去n,然后再返回該數字。否則用n減去次數,並將次數賦值為0,繼續遍歷下一個數字對兒。若循環退出了,直接返回 -1 即可,參見代碼如下:
解法一:
class RLEIterator {
public:
RLEIterator(vector<int> A) {
for (int i = 0; i < A.size(); i += 2) {
if (A[i] != 0) seq.push_back({A[i + 1], A[i]});
}
}
int next(int n) {
for (auto &p : seq) {
if (p.second == 0) continue;
if (p.second >= n) {
p.second -= n;
return p.first;
}
n -= p.second;
p.second = 0;
}
return -1;
}
private:
vector<pair<int, int>> seq;
};
其實我們根本不用將數字對兒抽離出來,直接用輸入數組的形式就可以,再用一個指針 cur,指向當前數字對兒的次數即可。那么在 next 函數中,我們首先來個 while 循環,判讀假如 cur 沒有越界,且當n大於當前當次數了,則n減去當前次數,cur 自增2,移動到下一個數字對兒的次數上。當 while 循環結束后,判斷若此時 cur 已經越界了,則返回 -1,否則當前次數減去n,並且返回當前數字即可,參見代碼如下:
解法二:
class RLEIterator {
public:
RLEIterator(vector<int>& A): nums(A), cur(0) {}
int next(int n) {
while (cur < nums.size() && n > nums[cur]) {
n -= nums[cur];
cur += 2;
}
if (cur >= nums.size()) return -1;
nums[cur] -= n;
return nums[cur + 1];
}
private:
int cur;
vector<int> nums;
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/900
參考資料:
https://leetcode.com/problems/rle-iterator/
[LeetCode All in One 題目講解匯總(持續更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)