TensorFlow入門示例教程


本部分的代碼目前都是基於GitHub大佬非常詳細的TensorFlow的教程上,首先給出鏈接:

https://github.com/aymericdamien/TensorFlow-Examples/

本人對其中部分代碼做了注釋和中文翻譯,會持續更新,目前包括:

  1. 傳統多層神經網絡用語MNIST數據集分類(代碼講解,翻譯)

 

1. 傳統多層神經網絡用語MNIST數據集分類(代碼講解,翻譯)

 

  1 """ Neural Network.
  2 
  3 A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
  4 implementation with TensorFlow. This example is using the MNIST database
  5 of handwritten digits (http://yann.lecun.com/exdb/mnist/).
  6 
  7 Links:
  8     [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
  9 
 10 Author: Aymeric Damien
 11 Project: https://github.com/aymericdamien/TensorFlow-Examples/
 12 """
 13 
 14 from __future__ import print_function
 15 
 16 # Import MNIST data
 17 # 導入mnist數據集
 18 from tensorflow.examples.tutorials.mnist import input_data
 19 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
 20 
 21 # 導入tf
 22 import tensorflow as tf
 23 
 24 # Parameters
 25 # 設定各種超參數
 26 learning_rate = 0.1 # 學習率
 27 num_steps = 500   # 訓練500次
 28 batch_size = 128  # 每批次取128個樣本訓練
 29 display_step = 100  # 每訓練100步顯示一次
 30 
 31 # Network Parameters
 32 # 設定網絡的超參數
 33 n_hidden_1 = 256 # 1st layer number of neurons
 34 n_hidden_2 = 256 # 2nd layer number of neurons
 35 num_input = 784 # MNIST data input (img shape: 28*28)
 36 num_classes = 10 # MNIST total classes (0-9 digits)
 37 
 38 # tf Graph input
 39 # tf圖的輸入,因為不知道到底輸入大小是多少,因此設定占位符
 40 X = tf.placeholder("float", [None, num_input])
 41 Y = tf.placeholder("float", [None, num_classes])
 42 
 43 # Store layers weight & bias
 44 # 初始化w和b
 45 weights = {
 46     'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
 47     'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
 48     'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
 49 }
 50 biases = {
 51     'b1': tf.Variable(tf.random_normal([n_hidden_1])),
 52     'b2': tf.Variable(tf.random_normal([n_hidden_2])),
 53     'out': tf.Variable(tf.random_normal([num_classes]))
 54 }
 55 
 56 
 57 # Create model
 58 # 創建模型
 59 def neural_net(x):
 60     # Hidden fully connected layer with 256 neurons
 61     # 隱藏層1,全連接了256個神經元
 62     layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
 63     # Hidden fully connected layer with 256 neurons
 64     # 隱藏層2,全連接了256個神經元
 65     layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
 66     # Output fully connected layer with a neuron for each class
 67     # 最后作為輸出的全連接層,對每一分類連接一個神經元
 68     out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
 69     return out_layer
 70 
 71 # Construct model
 72 # 開啟模型
 73 # 輸入數據X,得到得分向量logits
 74 logits = neural_net(X)
 75 # 用softmax分類器將得分向量轉變成概率向量
 76 prediction = tf.nn.softmax(logits)
 77 
 78 # Define loss and optimizer
 79 # 定義損失和優化器
 80 # 交叉熵損失, 求均值得到---->loss_op
 81 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
 82     logits=logits, labels=Y))
 83 # 優化器使用的是Adam算法優化器
 84 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
 85 # 最小化損失得到---->可以訓練的train_op
 86 train_op = optimizer.minimize(loss_op)
 87 
 88 # Evaluate model
 89 # 評估模型
 90 # tf.equal() 逐個元素進行判斷,如果相等就是True,不相等,就是False。
 91 correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
 92 # tf.cast() 數據類型轉換----> tf.reduce_mean() 再求均值
 93 accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
 94 
 95 # Initialize the variables (i.e. assign their default value)
 96 # 初始化這些變量(作用比如說,給他們分配隨機默認值)
 97 init = tf.global_variables_initializer()
 98 
 99 # Start training
100 # 現在開始訓練啦!
101 with tf.Session() as sess:
102 
103     # Run the initializer
104     # 運行初始化器
105     sess.run(init)
106 
107     for step in range(1, num_steps+1):
108         # 每批次128個訓練,取出這128個對應的data:x;標簽:y
109         batch_x, batch_y = mnist.train.next_batch(batch_size)
110         # Run optimization op (backprop)
111         # train_op是優化器得到的可以訓練的op,通過反向傳播優化模型
112         sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
113         # 每100步打印一次訓練的成果
114         if step % display_step == 0 or step == 1:
115             # Calculate batch loss and accuracy
116             # 計算每批次的是損失和准確度
117             loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
118                                                                  Y: batch_y})
119             print("Step " + str(step) + ", Minibatch Loss= " + \
120                   "{:.4f}".format(loss) + ", Training Accuracy= " + \
121                   "{:.3f}".format(acc))
122 
123     print("Optimization Finished!")
124 
125     # Calculate accuracy for MNIST test images
126     # 看看在測試集上,我們的模型表現如何
127     print("Testing Accuracy:", \
128         sess.run(accuracy, feed_dict={X: mnist.test.images,
129                                       Y: mnist.test.labels}))

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM