Flink window Function - ProcessAllWindowFunction


package window.non_keyed

import org.apache.flink.api.common.functions.FlatMapFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.ProcessAllWindowFunction
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector
import org.apache.flink.api.scala._

import scala.collection.mutable

/**
* @author: create by maoxiangyi
* @version: v1.0
* @description: window
* @date:2019 /6/4
*/
object ProcessAllWindowWordCount {
def main(args: Array[String]): Unit = {
//設置環境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment()
//設置數據源
env.addSource(new SourceFunction[String] {
override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
while (true) {
ctx.collect("hello hadoop hello storm hello spark")
Thread.sleep(1000)
}
}

override def cancel(): Unit = {}
})
//計算邏輯
.flatMap(_.split(" "))
.map((_, 1))
.timeWindowAll(Time.seconds(10), Time.seconds(10))

.process(new ProcessAllWindowFunction[(String, Int), mutable.Map[String, Int], TimeWindow] {
override def process(context: Context, elements: Iterable[(String, Int)], out: Collector[mutable.Map[String, Int]]): Unit = {
val wordCountMap = mutable.Map[String, Int]()
elements.foreach(kv => {
wordCountMap.put(kv._1, wordCountMap.get(kv._1).getOrElse(0) + kv._2)
})
out.collect(wordCountMap)
}
}).flatMap(new FlatMapFunction[mutable.Map[String, Int], (String, Int)] {
override def flatMap(value: mutable.Map[String, Int], out: Collector[(String, Int)]): Unit = {
value.foreach(out.collect(_))
}
})
.print()
//提交任務
env.execute("word count")
}
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM