用tensorflow框架搭建基於seq2seq-attention的聊天機器人


Tensorflow版本:

GPU: 1.12.0

理論部分:

參考:https://www.bilibili.com/video/av19080685,講解的超級詳細。

代碼部分:

1、語料庫預處理

2、搭建模型計算圖

3、啟動session會話,進行模型訓練。

文件夾圖示如下:其中data文件夾存儲對話語料,ids文件夾存儲詞語和id之間的映射關系,tmp文件夾存儲了整個的字典以及word2vec模型,checkpoint文件存儲了tensorflow訓練的模型。

進入代碼實戰部分:

首先得准備一些聊天機器人的語料庫,這個可以自己搜索。這里自己手寫了兩個txt文件的對話,便於演示如何使用tensorflow搭建聊天機器人的流程。

1.1 讀取語料庫

 1 import os
 2 import jieba
 3 import json
 4 from gensim.models import Word2Vec
 5 corpus_path = './data/'
 6 corpus_files = os.listdir(corpus_path)
 7 corpus = []
 8 for corpus_file in corpus_files:
 9     with open(os.path.join(corpus_path, corpus_file), 'r', encoding='utf-8') as f:
10         lines = f.readlines()
11         corpus.extend(lines)
12 corpus = [sentence.replace('\n', '') for sentence in corpus]
13 corpus = [sentence.replace('\ufeff', '') for sentence in corpus]
14 print('語料庫讀取完成'.center(30, '='))

1.2 分詞,構建詞典

1 corpus_cut = [jieba.lcut(sentence) for sentence in corpus]
2 print('分詞完成'.center(30, '='))
3 from tkinter import _flatten
4 tem = _flatten(corpus_cut)
5 _PAD, _BOS, _EOS, _UNK = '_PAD', '_BOS', '_EOS', '_UNK'
6 all_dict = [_PAD, _BOS, _EOS, _UNK] + list(set(tem))
7 print('詞典構建完成'.center(30, '='))

1.3 構建映射關系

1 id2word = {i: j for i, j in enumerate(all_dict)}
2 word2id = {j: i for i, j in enumerate(all_dict)}
3 # dict(zip(id2word.values(), id2word.keys()))
4 print('映射關系構建完成'.center(30, '='))

1.4 語料轉為id向量

1 ids = [[word2id.get(word, word2id[_UNK]) for word in sentence] for sentence in corpus_cut]

1.5 將語料拆分成source、target(問、答數據集)

1 # 拆分成問答數據集
2 fromids = ids[::2]
3 toids = ids[1::2]
4 len(fromids) == len(toids)

1.6 訓練詞向量

1 emb_size = 50
2 tmp = [list(map(str, id)) for id in ids]
3 if not os.path.exists('./tmp/word2vec.model'):
4     model = Word2Vec(tmp, size=emb_size, window=10, min_count=1, workers=-1)
5     model.save('./tmp/word2vec.model')
6 else:
7     print('詞向量模型已構建,可直接調取'.center(50, '='))

1.7 保存文件

1 # 用記事本存儲
2 with open('./tmp/fromids.txt', 'w', encoding='utf-8') as f:
3     f.writelines([' '.join(map(str, fromid)) for fromid in fromids])
4 # 用json存儲
5 with open('./ids/ids.json', 'w') as f:
6     json.dump({'fromids':fromids, 'toids':toids}, fp=f, ensure_ascii=False)

2、搭建模型計算圖

2.1 讀取文件

 1 with open('./ids/ids.json', 'r') as f:
 2     tmp = json.load(f)
 3 fromids = tmp['fromids']
 4 toids = tmp['toids']
 5 with open('./tmp/dic.txt', 'r', encoding='utf-8') as f:
 6     all_dict = f.read().split('\n')
 7 word2id = {j: i for i, j in enumerate(all_dict)}
 8 id2word = {i: j for i, j in enumerate(all_dict)}
 9 model = Word2Vec.load('./tmp/word2vec.model')
10 emb_size = model.layer1_size

2.2 構建詞向量矩陣

 1 vocab_size = len(all_dict)  # 詞典大小
 2 corpus_size = len(fromids)  # 對話長度
 3 
 4 embedding_matrix = np.zeros((vocab_size, emb_size), dtype=np.float32)
 5 tmp = np.diag([1] * emb_size) # 對於詞典中不存在的詞語
 6 
 7 k = 0
 8 for i in range(vocab_size):
 9     try:
10         embedding_matrix[i] = model.wv[str(i)]
11     except:
12         embedding_matrix[i] = tmp[k]
13         k += 1

2.3 統一長度

1 from_length = [len(i) for i in fromids]
2 max_from_length = max(from_length)
3 source = [i + [word2id['_PAD']] * (max_from_length - len(i)) for i in fromids]
4 to_length = [len(i) for i in toids]
5 max_to_length = max(to_length)
6 target = [i + [word2id['_PAD']] * (max_to_length - len(i)) for i in toids]

2.4 定義Tensor

 1 num_layers = 2 # 神經元層數
 2 hidden_size = 100 # 隱藏神經元個數
 3 learning_rate = 0.001 # 學習率,0.0001-0.001
 4 max_inference_sequence_length = 35
 5 with tf.variable_scope('tensor', reuse=tf.AUTO_REUSE):
 6     # 輸入
 7     input_data = tf.placeholder(tf.int32, [corpus_size, None], name='source')
 8     # 輸出
 9     output_data = tf.placeholder(tf.int32, [corpus_size, None], name='target')
10     # 輸入句子的長度
11     input_sequence_length = tf.placeholder(tf.int32, [corpus_size,], name='source_sequence_length')
12     # 輸出句子的長度
13     output_sequence_length = tf.placeholder(tf.int32, [corpus_size,], name='target_sequence_length')
14     # 輸出句子的最大長度
15     max_output_sequence_length = tf.reduce_max(output_sequence_length)
16     # 詞向量矩陣
17     emb_matrix = tf.constant(embedding_matrix, name='embedding_matrix', dtype=tf.float32)

2.5 Encoder

 1 def get_lstm_cell(hidden_size):
 2     lstm_cell = tf.contrib.rnn.LSTMCell(
 3         num_units=hidden_size,
 4         initializer=tf.random_uniform_initializer(minval=-0.1, maxval=0.1, seed=2019)
 5     )
 6     return lstm_cell
 7 def encoder(hidden_size, num_layers, emb_matrix, input_data):
 8     encoder_embedding_input = tf.nn.embedding_lookup(params=emb_matrix, ids=input_data)
 9     encoder_cells = tf.contrib.rnn.MultiRNNCell(
10         [get_lstm_cell(hidden_size) for i in range(num_layers)]
11     )
12     encoder_output, encoder_state= tf.nn.dynamic_rnn(cell=encoder_cells,
13                   inputs=encoder_embedding_input,
14                   sequence_length=input_sequence_length,
15                   dtype=tf.float32
16                  )
17     return encoder_output, encoder_state

2.6.1 普通Decoder

 1 def decoder(output_data, corpus_size, word2id, emb_matrix, hidden_size, num_layers,
 2             vocab_size, output_sequence_length, max_output_sequence_length, max_inference_sequence_length, encoder_state):
 3     # numpy數據切片 output_data[0:corpus_size:1,0:-1:1],刪除output_data最后一列數據
 4     ending = tf.strided_slice(output_data, begin=[0, 0], end=[corpus_size, -1], strides=[1, 1])
 5     begin_sigmal = tf.fill(dims=[corpus_size, 1], value=word2id['_BOS'])
 6     decoder_input_data = tf.concat([begin_sigmal, ending], axis=1, name='decoder_input_data')
 7     decoder_embedding_input = tf.nn.embedding_lookup(params=emb_matrix, ids=decoder_input_data)
 8     decoder_cells = tf.contrib.rnn.MultiRNNCell([get_lstm_cell(hidden_size) for i in range(num_layers)])
 9     project_layer = tf.layers.Dense(
10     units=vocab_size, # 全連接層神經元個數
11     kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1) # 權重矩陣初始化
12     )
13     with tf.variable_scope('Decoder'):
14         # Helper對象
15         training_helper = tf.contrib.seq2seq.TrainingHelper(
16             inputs=decoder_embedding_input,
17             sequence_length=output_sequence_length)
18         # Basic Decoder
19         training_decoder = tf.contrib.seq2seq.BasicDecoder(
20             cell=decoder_cells,
21             helper=training_helper,
22             output_layer=project_layer,
23             initial_state=encoder_state
24         )
25         # Dynamic RNN
26         training_final_output, training_final_state, training_sequence_length = tf.contrib.seq2seq.dynamic_decode(
27             decoder=training_decoder,
28             maximum_iterations=max_output_sequence_length,
29             impute_finished=True)
30     with tf.variable_scope('Decoder', reuse=True):
31         # Helper對象
32         start_tokens = tf.tile(input=tf.constant(value=[word2id['_BOS']], dtype=tf.int32),
33                                multiples=[corpus_size], name='start_tokens')
34         inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
35             embedding=emb_matrix,
36             start_tokens=start_tokens,
37             end_token=word2id['_EOS'])
38         # Basic Decoder
39         inference_decoder = tf.contrib.seq2seq.BasicDecoder(
40             cell=decoder_cells,
41             helper=inference_helper,
42             output_layer=project_layer,
43             initial_state=encoder_state
44         )
45         # Dynamic RNN
46         inference_final_output, inference_final_state, inference_sequence_length = tf.contrib.seq2seq.dynamic_decode(
47             decoder=inference_decoder,
48             maximum_iterations=max_inference_sequence_length,
49             impute_finished=True)
50     return training_final_output, training_final_state, inference_final_output, inference_final_state

2.6.2 Attention-Decoder

 1 def attention_decoder(output_data, corpus_size, word2id, emb_matrix, hidden_size, num_layers,
 2             vocab_size, output_sequence_length, max_output_sequence_length, max_inference_sequence_length, encoder_output):
 3     # numpy數據切片 output_data[0:corpus_size:1,0:-1:1],刪除output_data最后一列數據
 4     ending = tf.strided_slice(output_data, begin=[0, 0], end=[corpus_size, -1], strides=[1, 1])
 5     begin_sigmal = tf.fill(dims=[corpus_size, 1], value=word2id['_BOS'])
 6     decoder_input_data = tf.concat([begin_sigmal, ending], axis=1, name='decoder_input_data')
 7     decoder_embedding_input = tf.nn.embedding_lookup(params=emb_matrix, ids=decoder_input_data)
 8     decoder_cells = tf.contrib.rnn.MultiRNNCell([get_lstm_cell(hidden_size) for i in range(num_layers)])
 9     # Attention機制
10     attention_mechanism = tf.contrib.seq2seq.LuongAttention(
11         num_units=hidden_size,
12         memory=encoder_output,
13         memory_sequence_length=input_sequence_length
14     )
15     decoder_cells = tf.contrib.seq2seq.AttentionWrapper(
16         cell=decoder_cells,
17         attention_mechanism=attention_mechanism,
18         attention_layer_size=hidden_size
19     )
20     project_layer = tf.layers.Dense(
21     units=vocab_size, # 全連接層神經元個數
22     kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1) # 權重矩陣初始化
23     )
24     with tf.variable_scope('Decoder'):
25         # Helper對象
26         training_helper = tf.contrib.seq2seq.TrainingHelper(
27             inputs=decoder_embedding_input,
28             sequence_length=output_sequence_length)
29         # Basic Decoder
30         training_decoder = tf.contrib.seq2seq.BasicDecoder(
31             cell=decoder_cells,
32             helper=training_helper,
33             output_layer=project_layer,
34             initial_state=decoder_cells.zero_state(batch_size=corpus_size, dtype=tf.float32)
35         )
36         # Dynamic RNN
37         training_final_output, training_final_state, training_sequence_length = tf.contrib.seq2seq.dynamic_decode(
38             decoder=training_decoder,
39             maximum_iterations=max_output_sequence_length,
40             impute_finished=True)
41     with tf.variable_scope('Decoder', reuse=True):
42         # Helper對象
43         start_tokens = tf.tile(input=tf.constant(value=[word2id['_BOS']], dtype=tf.int32),
44                                multiples=[corpus_size], name='start_tokens')
45         inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
46             embedding=emb_matrix,
47             start_tokens=start_tokens,
48             end_token=word2id['_EOS'])
49         # Basic Decoder
50         inference_decoder = tf.contrib.seq2seq.BasicDecoder(
51             cell=decoder_cells,
52             helper=inference_helper,
53             output_layer=project_layer,
54             initial_state=decoder_cells.zero_state(batch_size=corpus_size, dtype=tf.float32)
55         )
56         # Dynamic RNN
57         inference_final_output, inference_final_state, inference_sequence_length = tf.contrib.seq2seq.dynamic_decode(
58             decoder=inference_decoder,
59             maximum_iterations=max_inference_sequence_length,
60             impute_finished=True)
61     return training_final_output, training_final_state, inference_final_output, inference_final_state

2.7 Encoder-Decoder Model

1 encoder_output, encoder_state = encoder(hidden_size, num_layers, emb_matrix, input_data)
2 # training_final_output, training_final_state, inference_final_output, inference_final_state = decoder(
3 #     output_data, corpus_size, word2id, emb_matrix, hidden_size, num_layers, vocab_size,
4 #     output_sequence_length, max_output_sequence_length, max_inference_sequence_length, encoder_state)
5 training_final_output, training_final_state, inference_final_output, inference_final_state = attention_decoder(
6     output_data, corpus_size, word2id, emb_matrix, hidden_size, num_layers, vocab_size,
7     output_sequence_length, max_output_sequence_length, max_inference_sequence_length, encoder_output)

2.7.1 Loss Fuction

1 # tf.identity 相當與 copy
2 training_logits = tf.identity(input=training_final_output.rnn_output, name='training_logits')
3 inference_logits = tf.identity(input=inference_final_output.sample_id, name='inference_logits')
4 # [2,5] -> [[1,1,0,0,0],[1,1,1,1,1]]
5 mask = tf.sequence_mask(lengths=output_sequence_length, maxlen=max_output_sequence_length, name='mask', dtype=tf.float32)

2.7.2 Optimize

1 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

2.7.3 梯度剪枝

1 gradients = optimizer.compute_gradients(cost) # 計算損失函數的梯度
2 clip_gradients = [(tf.clip_by_value(t=grad, clip_value_max=5, clip_value_min=-5),var)
3                   for grad, var in gradients if grad is not None]
4 train_op = optimizer.apply_gradients(clip_gradients)

3 Train

 1 with tf.Session() as sess:
 2     sess.run(tf.global_variables_initializer())
 3     ckpt_dir = './checkpoint/' 
 4     saver = tf.train.Saver()
 5     ckpt = tf.train.latest_checkpoint(checkpoint_dir=ckpt_dir)
 6     if ckpt:
 7         saver.restore(sess, ckpt)
 8         print('加載模型完成')
 9     else:
10         print('沒有找到訓練過的模型')
11     for i in range(500):
12         _, training_pre, loss = sess.run([train_op, training_final_output.sample_id, cost],
13             feed_dict={
14                 input_data:source,
15                 output_data:target,
16                 input_sequence_length:from_length,
17                 output_sequence_length:to_length
18         })
19         if i % 100 == 0:
20             print(f'第{i}次訓練'.center(50, '='))
21             print(f'損失值為{loss}'.center(50, '='))
22             print('輸入:',' '.join([id2word[i] for i in source[0] if i != word2id['_PAD']]))
23             print('輸出:',' '.join([id2word[i] for i in target[0] if i != word2id['_PAD']]))
24             print('Train預測:',' '.join([id2word[i] for i in training_pre[0] if i != word2id['_PAD']]))
25             saver.save(sess, ckpt_dir + 'trained_model.ckpt')
26             inference_pre = sess.run(
27                 inference_final_output.sample_id,
28                 feed_dict={
29                     input_data:source,
30                     input_sequence_length:from_length
31                 })
32             print('Inference預測:',' '.join([id2word[i] for i in inference_pre[0] if i != word2id['_PAD']]))
33             print('模型已保存'.center(50, '='))

訓練結果展示

相比較seq2seq網絡,帶有Attention機制的seq2seq效果會好很多。

代碼部分參考在網上找到的最新的Tensorflow API視頻講解,特手敲一遍供大家學習。由於Tensorflow Seq2Seq API經常大改,如運行出錯,請參考官網對應版本API。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM