Spark獲取DataFrame中列的幾種姿勢--col,$,column,apply


1.doc上的解釋(https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/sql/Column.html)
 df("columnName")            // On a specific DataFrame.
   col("columnName")           // A generic column no yet associated with a DataFrame.
   col("columnName.field")     // Extracting a struct field
   col("`a.column.with.dots`") // Escape `.` in column names.
   $"columnName"               // Scala short hand for a named column.
   expr("a + 1")               // A column that is constructed from a parsed SQL Expression.
   lit("abc")                  // A column that produces a literal (constant) value.

2.使用時涉及到的的包

   import spark.implicits._
   import org.apache.spark.sql.functions._
   import org.apache.spark.sql.Column
3.示例
scala> val idCol = $"id" idCol: org.apache.spark.sql.ColumnName = id scala> val idCol = col("id") idCol: org.apache.spark.sql.Column = id scala> val idCol = column("id") idCol: org.apache.spark.sql.Column = id
scala> val dataset = spark.range(5).toDF("text") dataset: org.apache.spark.sql.DataFrame = [text: bigint] scala> val textCol = dataset.col("text") textCol: org.apache.spark.sql.Column = text scala> val textCol = dataset.apply("text") textCol: org.apache.spark.sql.Column = text scala> val textCol = dataset("text") textCol: org.apache.spark.sql.Column = text

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM