Go語言基礎之並發
並發是編程里面一個非常重要的概念,Go語言在語言層面天生支持並發,這也是Go語言流行的一個很重要的原因。
Go語言中的並發編程
並發與並行
並發:同一時間段內執行多個任務(你在用微信和兩個女朋友聊天)。
並行:同一時刻執行多個任務(你和你朋友都在用微信和女朋友聊天)。
Go語言的並發通過goroutine
實現。goroutine
類似於線程,屬於用戶態的線程,我們可以根據需要創建成千上萬個goroutine
並發工作。goroutine
是由Go語言的運行時調度完成,而線程是由操作系統調度完成。Go語言還提供channel
在多個goroutine
間進行通信。goroutine
和channel
是 Go 語言秉承的 CSP(Communicating Sequential Process)並發模式的重要實現基礎。
goroutine
在java/c++中我們要實現並發編程的時候,我們通常需要自己維護一個線程池,並且需要自己去包裝一個又一個的任務和然后自己去調度線程執行任務並維護上下文切換,這一切通常會耗費程序員大量的心智。能不能有一種機制,程序員只需要定義很多個任務,讓系統去幫助我們把這些任務分配到CPU上實現並發執行呢? Go語言中的goroutine就是這樣一種機制,goroutine 的概念類似於線程,但 goroutine 由Go 程序運行時的調度和管理。Go 程序會智能地將 goroutine 中的任務合理地分配給每個 CPU。Go語言之所以被稱為現代化的編程語言,就是因為它在語言層面已經內置了調度和上下文切換的機制。在Go語言編程中你不需要去自己寫進程、線程、協程,你的技能包里只有一個技能–goroutinue,當你需要讓某個任務並發執行的時候,你只需要起一個goroutinue就可以了,就是這么簡單粗暴。
使用goroutine
Go 程序中使用go
關鍵字為一個函數創建一個goroutine
。一個函數可以被創建多個goroutine
,一個goroutine
必定對應一個函數。
啟動單個goroutine
啟動goroutine的方式非常簡單,只需要在調用的函數(普通函數和匿名函數)前面加上一個go
關鍵字。
舉個例子如下:
func hello() { fmt.Println("Hello Goroutine!") } func main() { hello() fmt.Println("main goroutine done!") }
這個示例中hello函數和下面的語句是串行的,執行的結果是打印完Hello Goroutine!
后打印main goroutine done!
。
接下來我們在調用hello函數前面加上關鍵字go
,也就是啟動一個goroutine去執行hello這個函數。
func main() { go hello() // 啟動另外一個goroutine去執行hello函數 fmt.Println("main goroutine done!") }
這一次的執行結果只打印了main goroutine done!
,並沒有打印Hello Goroutine!
。為什么呢?
在程序啟動時,Go程序就會為main()
函數創建一個默認的goroutine
。當main()函數返回的時候該goroutine
就結束了,所有在main()
函數中啟動的goroutine
會一同結束,main
函數所在的goroutine
就像是權利的游戲中的夜王,其他的goroutine
都是異鬼,夜王一死它轉化的那些異鬼也就全部GG了。所以我們要想辦法讓main函數等一等hello函數,最簡單粗暴的方式就是Sleep了。
func main() { go hello() // 啟動另外一個goroutine去執行hello函數 fmt.Println("main goroutine done!") time.Sleep(time.Second) }
執行上面的代碼你會發現,這一次先打印main goroutine done!
,然后緊接着打印Hello Goroutine!
。
首先為什么會先打印main goroutine done!
是因為我們在創建新的goroutine的時候需要花費一些時間,而此時mian函數所在的goroutine
是繼續執行的。
sync.WaitGroup
在代碼中生硬的使用time.Sleep
肯定是不合適的,Go語言中可以使用sync.WaitGroup
來實現並發任務的同步。sync.WaitGroup
有以下幾個方法:
方法名 | 功能 |
---|---|
(wg * WaitGroup) Add(delta int) | 計數器+delta |
(wg *WaitGroup) Done() | 計數器-1 |
(wg *WaitGroup) Wait() | 阻塞直到計數器變為0 |
sync.WaitGroup
內部維護着一個計數器,計數器的值可以增加和減少。例如當我們啟動了N 個並發任務時,就將計數器值增加N。每個任務完成時通過調用Done()方法將計數器減1。通過調用Wait()來等待並發任務執行完,當計數器值為0時,表示所有並發任務已經完成。
我們利用sync.WaitGroup
將上面的代碼優化一下:
var wg sync.WaitGroup func hello() { defer wg.Done() fmt.Println("Hello Goroutine!") } func main() { wg.Add(1) go hello() // 啟動另外一個goroutine去執行hello函數 fmt.Println("main goroutine done!") wg.Wait() }
需要注意sync.WaitGroup
是一個結構體,傳遞的時候要傳遞指針。
啟動多個goroutine
在Go語言中實現並發就是這樣簡單,我們還可以啟動多個goroutine
。讓我們再來一個例子:
var wg sync.WaitGroup func hello(i int) { defer wg.Done() fmt.Println("Hello Goroutine!", i) } func main() { for i := 0; i < 10; i++ { wg.Add(1) go hello(i) } wg.Wait() }
多次執行上面的代碼,會發現每次打印的數字的順序都不一致。這是因為10個goroutine
是並發執行的,而goroutine
的調度是隨機的。
goroutine與線程
可增長的棧
OS線程(操作系統線程)一般都有固定的棧內存(通常為2MB),一個goroutine
的棧在其生命周期開始時只有很小的棧(典型情況下2KB),goroutine
的棧不是固定的,他可以按需增大和縮小,goroutine
的棧大小限制可以達到1GB,雖然極少會用到這個大。所以在Go語言中一次創建十萬左右的goroutine
也是可以的。
goroutine調度
OS線程是由OS內核來調度的,goroutine
則是由Go運行時(runtime)自己的調度器調度的,這個調度器使用一個稱為m:n調度的技術(復用/調度m個goroutine到n個OS線程)。goroutine的調度不需要切換內核語境,所以調用一個goroutine比調度一個線程成本低很多。
GOMAXPROCS
Go運行時的調度器使用GOMAXPROCS
參數來確定需要使用多少個OS線程來同時執行Go代碼。默認值是機器上的CPU核心數。例如在一個8核心的機器上,調度器會把Go代碼同時調度到8個OS線程上(GOMAXPROCS是m:n調度中的n)。Go語言中可以通過runtime.GOMAXPROCS()
函數設置當前程序並發時占用的CPU邏輯核心數。
Go1.5版本之前,默認使用的是單核心執行。Go1.5版本之后,默認使用全部的CPU邏輯核心數。
我們可以通過將任務分配到不同的CPU邏輯核心上實現並行的效果,這里舉個例子:
func a() { for i := 1; i < 10; i++ { fmt.Println("A:", i) } } func b() { for i := 1; i < 10; i++ { fmt.Println("B:", i) } } func main() { runtime.GOMAXPROCS(1) go a() go b() time.Sleep(time.Second) }
兩個任務只有一個邏輯核心,此時是做完一個任務再做另一個任務。 將邏輯核心數設為2,此時兩個任務並行執行,代碼如下。
func a() { for i := 1; i < 10; i++ { fmt.Println("A:", i) } } func b() { for i := 1; i < 10; i++ { fmt.Println("B:", i) } } func main() { runtime.GOMAXPROCS(2) go a() go b() time.Sleep(time.Second) }
Go語言中的操作系統線程和goroutine的關系:
- 一個操作系統線程對應用戶態多個goroutine。
- go程序可以同時使用多個操作系統線程。
- goroutine和OS線程是多對多的關系,即m:n。
channel
單純地將函數並發執行是沒有意義的。函數與函數間需要交換數據才能體現並發執行函數的意義。雖然可以使用共享內存進行數據交換,但是共享內存在不同的goroutine
中容易發生競態問題。為了保證數據交換的正確性,必須使用互斥量對內存進行加鎖,這種做法勢必造成性能問題。go語言的並發模型是CSP,提倡通過通信共享內存而不是通過共享內存而實現通信。如果說goroutine
是Go程序並發的執行體,channel
就是它們之間的連接。channel
是可以讓一個goroutine
發送特定值到另一個goroutine
的通信機制。Go 語言中的通道(channel)是一種特殊的類型。通道像一個傳送帶或者隊列,總是遵循先入先出(First In First Out)的規則,保證收發數據的順序。每一個通道都是一個具體類型的導管,也就是聲明channel的時候需要為其指定元素類型。
聲明channel
聲明通道類型的格式如下:
var 變量 chan 元素類型
舉幾個例子:
var ch1 chan int // 聲明一個傳遞整型的通道 var ch2 chan bool // 聲明一個傳遞布爾型的通道 var ch3 chan []int // 聲明一個傳遞int切片的通道
創建channel
通道是引用類型,通道類型的空值是nil
。
var ch chan int fmt.Println(ch) // <nil>
聲明的通道后需要使用make
函數初始化之后才能使用。 創建channel的格式如下:
make(chan 元素類型, [緩沖大小])
緩沖大小是可選的。
舉幾個例子:
ch4 := make(chan int) ch5 := make(chan bool) ch6 := make(chan []int)
channel操作
通道有發送(send)、接收(receive)和關閉(close)三種操作。發送和接收都使用<-
符號。
現在我們先使用以下語句定義一個通道:
ch := make(chan int)
發送
將一個值發送到通道中。
ch <- 10 // 把10發送到ch中
接收
從一個通道中接收值。
x := <- ch // 從ch中接收值並賦值給變量x <-ch // 從ch中接收值,忽略結果
關閉
我們通過調用內置的close
函數來關閉通道。
close(ch)
關於關閉通道需要注意的事情是,只有在通知接收方goroutine所有的數據都發送完畢的時候才需要關閉通道。通道是可以被垃圾回收機制回收的,它和關閉文件是不一樣的,在結束操作之后關閉文件是必須要做的,但關閉通道不是必須的。關閉后的通道有以下特點:
- 對一個關閉的通道再發送值就會導致panic。
- 對一個關閉的通道進行接收會一直獲取值直到通道為空。
- 對一個關閉的並且沒有值的通道執行接收操作會得到對應類型的零值。
- 關閉一個已經關閉的通道會導致panic。
無緩沖的通道
無緩沖的通道又稱為阻塞的通道。我們來看一下下面的代碼:
func main() { ch := make(chan int) ch <- 10 fmt.Println("發送成功") }
上面這段代碼能夠通過編譯,但是執行的時候會出現以下錯誤:
fatal error: all goroutines are asleep - deadlock! goroutine 1 [chan send]: main.main() .../src/github.com/Q1mi/studygo/day06/channel02/main.go:8 +0x54
為什么會出現deadlock
錯誤呢?
因為我們使用ch := make(chan int)
創建的是無緩沖的通道,無緩沖的通道只有在有人接收值的時候才能發送值。就像你住的小區沒有快遞櫃和代收點,快遞員給你打電話必須要把這個物品送到你的手中,簡單來說就是無緩沖的通道必須有接收才能發送。上面的代碼會阻塞在ch <- 10
這一行代碼形成死鎖,那如何解決這個問題呢?
一種方法是啟用一個goroutine
去接收值,例如:
func recv(c chan int) { ret := <-c fmt.Println("接收成功", ret) } func main() { ch := make(chan int) go recv(ch) // 啟用goroutine從通道接收值 ch <- 10 fmt.Println("發送成功") }
無緩沖通道上的發送操作會阻塞,直到另一個goroutine
在該通道上執行接收操作,這時值才能發送成功,兩個goroutine
將繼續執行。相反,如果接收操作先執行,接收方的goroutine將阻塞,直到另一個goroutine
在該通道上發送一個值。使用無緩沖通道進行通信將導致發送和接收的goroutine同步化。因此,無緩沖通道也被稱為同步通道
。
有緩沖的通道
解決上面問題的方法還有一種就是使用有緩沖區的通道。我們可以在使用make函數初始化通道的時候為其指定通道的容量,例如:
func main() { ch := make(chan int, 1) // 創建一個容量為1的有緩沖區通道 ch <- 10 fmt.Println("發送成功") }
只要通道的容量大於零,那么該通道就是有緩沖的通道,通道的容量表示通道中能存放元素的數量。就像你小區的快遞櫃只有那么個多格子,格子滿了就裝不下了,就阻塞了,等到別人取走一個快遞員就能往里面放一個。
我們可以使用內置的len
函數獲取通道內元素的數量,使用cap
函數獲取通道的容量。
如何優雅的從通道循環取值
當通過通道發送有限的數據時,我們可以通過close
函數關閉通道來告知從該通道接收值的goroutine
停止等待。當通道被關閉時,往該通道發送值會引發panic,從該通道里接收的值一直都是類型零值。那如何判斷一個通道是否被關閉了呢?
我們來看下面這個例子:
// channel 練習 func main() { ch1 := make(chan int) ch2 := make(chan int) // 開啟goroutine將0~100的數發送到ch1中 go func() { for i := 0; i < 100; i++ { ch1 <- i } close(ch1) }() // 開啟goroutine從ch1中接收值,並將該值的平方發送到ch2中 go func() { for { i, ok := <-ch1 if !ok { break } ch2 <- i * i } close(ch2) }() // 在主goroutine中從ch2中接收值打印 for i := range ch2 { fmt.Println(i) } }
從上面的例子中我們看到有兩種方式在接收值的時候判斷通道是否被關閉,我們通常使用的是for range
的方式。
單向通道
有的時候我們會將通道作為參數在多個任務函數間傳遞,很多時候我們在不同的任務函數中使用通道都會對其進行限制,比如只能發送或只能接收。Go語言中提供了單向通道來處理這種情況。例如,我們把上面的例子改造如下:
func counter(out chan<- int) { for i := 0; i < 100; i++ { out <- i } close(out) } func squarer(out chan<- int, in <-chan int) { for i := range in { out <- i * i } close(out) } func printer(in <-chan int) { for i := range in { fmt.Println(i) } } func main() { ch1 := make(chan int) ch2 := make(chan int) go counter(ch1) go squarer(ch2, ch1) printer(ch2) }
其中,chan<- int
是一個只能發送的通道,可以發送但是不能接收;<-chan int
是一個只能接收的通道,可以接收但是不能發送。在函數傳參及任何賦值操作中將雙向通道轉換為單向通道是可以的,但反過來是不可以的。
select多路復用
在某些場景下我們需要同時從多個通道接收數據。通道在接收數據時,如果沒有數據可以接收將會發生阻塞。你也許會寫出如下代碼使用遍歷的方式來實現:
for{ // 嘗試從ch1接收值 data, ok := <-ch1 // 嘗試從ch2接收值 data, ok := <-ch2 … }
這種方式雖然可以實現從多個通道接收值的需求,但是運行性能會差很多。為了應對這種場景,Go內置了select
關鍵字,可以同時響應多個通道的操作。select的使用類似於switch語句,它有一些列case分支和一個默認的分支。每個case會對應一個通道的通信(接收或發送)過程。
select
會一直等待,直到某個case
的通信操作完成時,就會執行case
分支對應的語句。具體格式如下:
select{ case <-ch1: ... case data := <-ch2: ... case ch3<-data: ... default: 默認操作 }
舉個小例子來演示下select
的使用:
func main() { ch := make(chan int, 1) for i := 0; i < 10; i++ { select { case x := <-ch: fmt.Println(x) case ch <- i: } } }
使用select
語句能提高代碼的可讀性。如果多個case
同時滿足,select
會隨機選擇一個。對於沒有case
的select{}
會一直等待。
並發安全和鎖
有時候在Go代碼中可能會存在多個goroutine
同時操作一個資源(臨界區),這種情況會發生競態問題
(數據競態)。類比現實生活中的例子有十字路口被各個方向的的汽車競爭;還有火車上的衛生間被車廂里的人競爭。 舉個例子:
var x int64 var wg sync.WaitGroup func add() { for i := 0; i < 5000; i++ { x = x + 1 } wg.Done() } func main() { wg.Add(2) go add() go add() wg.Wait() fmt.Println(x) }
上面的代碼中我們開啟了兩個goroutine
去累加變量x的值,這兩個goroutine
在訪問和修改x
變量的時候就會存在數據競爭,導致最后的結果與期待的不符。
互斥鎖
互斥鎖是一種常用的控制共享資源訪問的方法,它能夠保證同時只有一個goroutine
可以訪問共享資源。Go語言中使用sync
包的Mutex
類型來實現互斥鎖。 使用互斥鎖來修復上面代碼的問題:
var x int64 var wg sync.WaitGroup var lock sync.Mutex func add() { for i := 0; i < 5000; i++ { lock.Lock() // 加鎖 x = x + 1 lock.Unlock() // 解鎖 } wg.Done() } func main() { wg.Add(2) go add() go add() wg.Wait() fmt.Println(x) }
使用互斥鎖能夠保證同一時間有且只有一個goroutine
進入臨界區,其他的goroutine
則在等待鎖;當互斥鎖釋放后,等待的goroutine
才可以獲取鎖進入臨界區,多個goroutine
同時等待一個鎖時,喚醒的策略是隨機的。
讀寫互斥鎖
互斥鎖是完全互斥的,但是有很多實際的場景下是讀多寫少的,當我們並發的去讀取一個資源不涉及資源修改的時候是沒有必要加鎖的,這種場景下使用讀寫鎖是更好的一種選擇。讀寫鎖在Go語言中使用sync
包中的RWMutex
類型。讀寫鎖分為兩種:讀鎖和寫鎖。當一個goroutine獲取讀鎖之后,其他的goroutine
如果是獲取讀鎖會繼續獲得鎖,如果是獲取寫鎖就會等待;當一個goroutine
獲取寫鎖之后,其他的goroutine
無論是獲取讀鎖還是寫鎖都會等待。
讀寫鎖示例:
var ( x int64 wg sync.WaitGroup lock sync.Mutex rwlock sync.RWMutex ) func write() { // lock.Lock() // 加互斥鎖 rwlock.Lock() // 加寫鎖 x = x + 1 time.Sleep(10 * time.Millisecond) // 假設讀操作耗時10毫秒 rwlock.Unlock() // 解寫鎖 // lock.Unlock() // 解互斥鎖 wg.Done() } func read() { // lock.Lock() // 加互斥鎖 rwlock.RLock() // 加讀鎖 time.Sleep(time.Millisecond) // 假設讀操作耗時1毫秒 rwlock.RUnlock() // 解讀鎖 // lock.Unlock() // 解互斥鎖 wg.Done() } func main() { start := time.Now() for i := 0; i < 10; i++ { wg.Add(1) go write() } for i := 0; i < 1000; i++ { wg.Add(1) go read() } wg.Wait() end := time.Now() fmt.Println(end.Sub(start)) }
需要注意的是讀寫鎖非常適合讀多寫少的場景,如果讀和寫的操作差別不大,讀寫鎖的優勢就發揮不出來。
sync.Once
說在前面:這是一個進階知識點。 延遲一個開銷很大的初始化操作到真正用到它的時候再執行是一個很好的實踐。因為預先初始化一個變量(比如在init函數中完成初始化)會增加程序的啟動延時,而且有可能實際執行過程中這個變量沒有用上,那這個初始化操作就不是必須要做的。
我們來看一個例子:
var icons map[string]image.Image func loadIcons() { icons = map[string]image.Image{ "left": loadIcon("left.png"), "up": loadIcon("up.png"), "right": loadIcon("right.png"), "down": loadIcon("down.png"), } } // Icon 被多個goroutine調用時不是並發安全的 func Icon(name string) image.Image { if icons == nil { loadIcons() } return icons[name] }
多個goroutine
並發調用Icon函數時不是並發安全的,現代的編譯器和CPU可能會在保證每個goroutine
都滿足串行一致的基礎上自由地重排訪問內存的順序。loadIcons函數可能會被重排為以下結果:
func loadIcons() { icons = make(map[string]image.Image) icons["left"] = loadIcon("left.png") icons["up"] = loadIcon("up.png") icons["right"] = loadIcon("right.png") icons["down"] = loadIcon("down.png") }
在這種情況下就會出現即使判斷了icons
不是nil也不意味着變量初始化完成了。考慮到這種情況,我們能想到的辦法就是添加互斥鎖,保證初始化icons
的時候不會被其他的goroutine
操作,但是這樣做又會引發性能問題。Go語言中的sync
包中提供了一個針對一次性初始化問題的解決方案–sync.Once
。
sync.Once
只有一個Do方法,其簽名如下:
func (o *Once) Do(f func()) {}
如果要執行的函數f
需要傳遞參數就需要搭配閉包來使用。
使用sync.Once
改造的示例代碼如下:
var icons map[string]image.Image var loadIconsOnce sync.Once func loadIcons() { icons = map[string]image.Image{ "left": loadIcon("left.png"), "up": loadIcon("up.png"), "right": loadIcon("right.png"), "down": loadIcon("down.png"), } } // Icon 是並發安全的 func Icon(name string) image.Image { loadIconsOnce.Do(loadIcons) return icons[name] }
sync.Once
其實內部包含一個互斥鎖和一個布爾值,互斥鎖保證布爾值和數據的安全,而布爾值用來記錄初始化是否完成。這樣設計就能保證初始化操作的時候是並發安全的並且初始化操作也不會被執行多次。
sync.Map
Go語言中內置的map不是並發安全的。請看下面的示例:
var m = make(map[string]int) func get(key string) int { return m[key] } func set(key string, value int) { m[key] = value } func main() { wg := sync.WaitGroup{} for i := 0; i < 20; i++ { wg.Add(1) go func(n int) { key := strconv.Itoa(n) set(key, n) fmt.Printf("k=:%v,v:=%v\n", key, get(key)) wg.Done() }(i) } wg.Wait() }
上面的代碼開啟少量幾個goroutine
的時候可能沒什么問題,當並發多了之后執行上面的代碼就會報fatal error: concurrent map writes
錯誤。像這種場景下就需要為map加鎖來保證並發的安全性了,Go語言的sync
包中提供了一個開箱即用的並發安全版map–sync.Map
。開箱即用表示不用像內置的map一樣使用make函數初始化就能直接使用。同時sync.Map
內置了諸如Store
、Load
、LoadOrStore
、Delete
、Range
等操作方法。
var m = sync.Map{} func main() { wg := sync.WaitGroup{} for i := 0; i < 20; i++ { wg.Add(1) go func(n int) { key := strconv.Itoa(n) m.Store(key, n) value, _ := m.Load(key) fmt.Printf("k=:%v,v:=%v\n", key, value) wg.Done() }(i) } wg.Wait() }
原子操作
代碼中的加鎖操作因為涉及內核態的上下文切換會比較耗時、代價比較高。針對基本數據類型我們還可以使用原子操作來保證並發安全,因為原子操作是Go語言提供的方法它在用戶態就可以完成,因此性能比加鎖操作更好。Go語言中原子操作由內置的標准庫sync/atomic
提供。
atomic包
方法 | 解釋 |
---|---|
func LoadInt32(addr *int32) (val int32) func LoadInt64(addr *int64) (val int64) func LoadUint32(addr *uint32) (val uint32) func LoadUint64(addr *uint64) (val uint64) func LoadUintptr(addr *uintptr) (val uintptr) func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer) |
讀取操作 |
func StoreInt32(addr *int32, val int32) func StoreInt64(addr *int64, val int64) func StoreUint32(addr *uint32, val uint32) func StoreUint64(addr *uint64, val uint64) func StoreUintptr(addr *uintptr, val uintptr) func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer) |
寫入操作 |
func AddInt32(addr *int32, delta int32) (new int32) func AddInt64(addr *int64, delta int64) (new int64) func AddUint32(addr *uint32, delta uint32) (new uint32) func AddUint64(addr *uint64, delta uint64) (new uint64) func AddUintptr(addr *uintptr, delta uintptr) (new uintptr) |
修改操作 |
func SwapInt32(addr *int32, new int32) (old int32) func SwapInt64(addr *int64, new int64) (old int64) func SwapUint32(addr *uint32, new uint32) (old uint32) func SwapUint64(addr *uint64, new uint64) (old uint64) func SwapUintptr(addr *uintptr, new uintptr) (old uintptr) func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer) |
交換操作 |
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool) func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool) func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool) func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool) func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool) func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool) |
比較並交換操作 |
示例
我們填寫一個示例來比較下互斥鎖和原子操作的性能。
var x int64 var l sync.Mutex var wg sync.WaitGroup // 普通版加函數 func add() { // x = x + 1 x++ // 等價於上面的操作 wg.Done() } // 互斥鎖版加函數 func mutexAdd() { l.Lock() x++ l.Unlock() wg.Done() } // 原子操作版加函數 func atomicAdd() { atomic.AddInt64(&x, 1) wg.Done() } func main() { start := time.Now() for i := 0; i < 10000; i++ { wg.Add(1) // go add() // 普通版add函數 不是並發安全的 // go mutexAdd() // 加鎖版add函數 是並發安全的,但是加鎖性能開銷大 go atomicAdd() // 原子操作版add函數 是並發安全,性能優於加鎖版 } wg.Wait() end := time.Now() fmt.Println(x) fmt.Println(end.Sub(start)) }
atomic
包提供了底層的原子級內存操作,對於同步算法的實現很有用。這些函數必須謹慎地保證正確使用。除了某些特殊的底層應用,使用通道或者sync包的函數/類型實現同步更好。