論文的caffemodel轉化為tensorflow模型過程中越坑無數,最后索性直接用caffe提特征。
caffe提取倒數第二層,pool5的輸出,fc1000層的輸入,2048維的特征
1 #coding=utf-8 2 3 import caffe 4 import os 5 import numpy as np 6 import scipy.io as sio 7 8 #路徑設置 9 OUTPUT='E:/caffemodel/'#輸出txt文件夾 10 root='E:/caffemodel/' #根目錄 11 deploy=root + 'ResNet-101-deploy.prototxt' #deploy文件 12 caffe_model=root + 'ResNet-101-model.caffemodel' #訓練好的 caffemodel 13 imgroot = 'E:/bjfu-cv-project/img_35/' #隨機找的一張待測圖片 14 #labels_filename = 'E:/bjfu-cv-project/CUB_200_2011/CUB_200_2011/classes.txt' #類別名稱文件,將數字標簽轉換回類別名稱 15 net = caffe.Net(deploy,caffe_model,caffe.TEST) #加載model和network 16 mean_file='mean.npy' 17 18 #容器初始化 19 dict = {} 20 21 fea = [] 22 out_array = np.zeros(shape=(2048,)) 23 24 #文件讀取 25 26 count = 0 27 for root, dirs, files in os.walk(imgroot): 28 for dir in dirs: 29 print(dir) 30 for root, dirs, files in os.walk(imgroot+dir): 31 i = 0 32 for img in files: 33 img = imgroot+dir + '/' + img 34 #圖片預處理設置 35 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #設定圖片的shape格式(1,3,224,224) 36 transformer.set_transpose('data', (2,0,1)) #改變維度的順序,由原始圖片(224,224,3)變為(3,224,224) 37 transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #減去均值,前面訓練模型時沒有減均值,這兒就不用 38 transformer.set_raw_scale('data', 255) # 縮放到【0,255】之間 39 transformer.set_channel_swap('data', (2,1,0)) #交換通道,將圖片由RGB變為BGR 40 try: 41 im=caffe.io.load_image(img) #加載圖片 42 except: 43 continue 44 net.blobs['data'].data[...] = transformer.preprocess('data',im) #執行上面設置的圖片預處理操作,並將圖片載入到blob中 45 46 #執行測試 47 out = net.forward() 48 fea.append(net.blobs['pool5'].data) # 提取某層數據(特征) 49 print(dir, i, img) 50 out_array = np.column_stack((fea[i][0,:,0,0], out_array)) 51 i = i + 1 52 #結果輸出 53 dict['array'] = out_array 54 save_matFile = 'fearture_of_35.mat' 55 sio.savemat(save_matFile, dict)
均值文件ResNet_mean.binaryproto轉化mean.npy
1 #coding=utf-8 2 import caffe 3 import numpy as np 4 5 MEAN_PROTO_PATH = 'ResNet_mean.binaryproto' # 待轉換的pb格式圖像均值文件路徑 6 7 MEAN_NPY_PATH = 'mean.npy' # 轉換后的numpy格式圖像均值文件路徑 8 9 blob = caffe.proto.caffe_pb2.BlobProto() # 創建protobuf blob 10 data = open(MEAN_PROTO_PATH, 'rb' ).read() # 讀入mean.binaryproto文件內容 11 blob.ParseFromString(data) # 解析文件內容到blob 12 13 array = np.array(caffe.io.blobproto_to_array(blob))# 將blob中的均值轉換成numpy格式,array的shape (mean_number,channel, hight, width) 14 mean_npy = array[0] # 一個array中可以有多組均值存在,故需要通過下標選擇其中一組均值 15 np.save(MEAN_NPY_PATH ,mean_npy)
