Redis已經成為web應用開發不可或缺的一個組成部分,在項目中的應用越來越廣泛,這篇文章就來講講那些關於Redis監控的那點事。
vredis-benchmark
1.1 簡介
第一個就介紹一下,Redis自帶的性能檢測工具redis-benchmark, 該工具可以模擬 N 個客戶端同時發出 Y 個請求。 可以使用 redis-benchmark -h 來查看基准參數。
1.2 命令格式:
redis-benchmark [-h ] [-p ] [-c ] [-n <requests]> [-k ]
1.3 參數介紹:
| 序號 | 選項 | 描述 | 默認值 |
|---|---|---|---|
| 1 | -h | 指定服務器主機名 | 127.0.0.1 |
| 2 | -p | 指定服務器端口 | 6379 |
| 3 | -s | 指定服務器 socket | |
| 4 | -c | 指定並發連接數 | 50 |
| 5 | -n | 指定請求數 | 10000 |
| 6 | -d | 以字節的形式指定 SET/GET 值的數據大小 | 2 |
| 7 | -k | 1=keep alive 0=reconnect | 1 |
| 8 | -r | SET/GET/INCR 使用隨機 key, SADD 使用隨機值 | |
| 9 | -P | 通過管道傳輸 <numreq> 請求 | 1 |
| 10 | -q | 強制退出 redis。僅顯示 query/sec 值 | |
| 11 | --csv | 以 CSV 格式輸出 | |
| 12 | -l | 生成循環,永久執行測試 | |
| 13 | -t | 僅運行以逗號分隔的測試命令列表。 | |
| 14 | -I | Idle 模式。僅打開 N 個 idle 連接並等待。 |
1.4 實例:
1.4.1 同時執行1000個請求來檢測性能:
redis-benchmark -n 1000 -q

1.4.2 50個並發請求,10000個請求,檢測Redis性能:
redis-benchmark -h localhost -p 6379 -c 50 -n 10000
[root@localhost toutou]# redis-benchmark -h localhost -p 6379 -c 50 -n 10000 ====== PING_INLINE ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 96.25% <= 1 milliseconds 98.38% <= 2 milliseconds 99.01% <= 3 milliseconds 100.00% <= 4 milliseconds 88495.58 requests per second ====== PING_BULK ====== 10000 requests completed in 0.10 seconds 50 parallel clients 3 bytes payload keep alive: 1 97.74% <= 1 milliseconds 100.00% <= 2 milliseconds 95238.10 requests per second ====== SET ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 98.44% <= 1 milliseconds 100.00% <= 1 milliseconds 93457.95 requests per second ====== GET ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 98.33% <= 1 milliseconds 99.13% <= 2 milliseconds 100.00% <= 2 milliseconds 93457.95 requests per second ====== INCR ====== 10000 requests completed in 0.10 seconds 50 parallel clients 3 bytes payload keep alive: 1 98.28% <= 1 milliseconds 100.00% <= 1 milliseconds 95238.10 requests per second ====== LPUSH ====== 10000 requests completed in 0.10 seconds 50 parallel clients 3 bytes payload keep alive: 1 98.70% <= 1 milliseconds 100.00% <= 1 milliseconds 97087.38 requests per second ====== RPUSH ====== 10000 requests completed in 0.10 seconds 50 parallel clients 3 bytes payload keep alive: 1 98.66% <= 1 milliseconds 100.00% <= 1 milliseconds 95238.10 requests per second ====== LPOP ====== 10000 requests completed in 0.15 seconds 50 parallel clients 3 bytes payload keep alive: 1 93.78% <= 1 milliseconds 96.51% <= 2 milliseconds 97.35% <= 3 milliseconds 98.41% <= 4 milliseconds 99.02% <= 5 milliseconds 99.23% <= 6 milliseconds 99.46% <= 7 milliseconds 99.96% <= 8 milliseconds 99.97% <= 9 milliseconds 100.00% <= 9 milliseconds 67567.57 requests per second ====== RPOP ====== 10000 requests completed in 0.31 seconds 50 parallel clients 3 bytes payload keep alive: 1 65.78% <= 1 milliseconds 84.10% <= 2 milliseconds 90.96% <= 3 milliseconds 94.19% <= 4 milliseconds 95.72% <= 5 milliseconds 97.05% <= 6 milliseconds 98.33% <= 7 milliseconds 98.80% <= 8 milliseconds 99.40% <= 9 milliseconds 99.72% <= 10 milliseconds 100.00% <= 14 milliseconds 31746.03 requests per second ====== SADD ====== 10000 requests completed in 0.19 seconds 50 parallel clients 3 bytes payload keep alive: 1 93.00% <= 1 milliseconds 96.88% <= 2 milliseconds 98.33% <= 3 milliseconds 98.92% <= 6 milliseconds 98.94% <= 7 milliseconds 98.95% <= 9 milliseconds 99.04% <= 10 milliseconds 99.48% <= 12 milliseconds 99.61% <= 14 milliseconds 99.62% <= 15 milliseconds 99.99% <= 16 milliseconds 100.00% <= 16 milliseconds 52083.33 requests per second ====== HSET ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 95.90% <= 1 milliseconds 99.95% <= 2 milliseconds 100.00% <= 2 milliseconds 90909.09 requests per second ====== SPOP ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 97.04% <= 1 milliseconds 99.75% <= 2 milliseconds 99.78% <= 3 milliseconds 100.00% <= 3 milliseconds 90909.09 requests per second ====== LPUSH (needed to benchmark LRANGE) ====== 10000 requests completed in 0.11 seconds 50 parallel clients 3 bytes payload keep alive: 1 96.48% <= 1 milliseconds 99.46% <= 2 milliseconds 99.95% <= 3 milliseconds 100.00% <= 3 milliseconds 87719.30 requests per second ====== LRANGE_100 (first 100 elements) ====== 10000 requests completed in 0.33 seconds 50 parallel clients 3 bytes payload keep alive: 1 32.63% <= 1 milliseconds 93.24% <= 2 milliseconds 99.83% <= 3 milliseconds 100.00% <= 3 milliseconds 30303.03 requests per second ====== LRANGE_300 (first 300 elements) ====== 10000 requests completed in 0.85 seconds 50 parallel clients 3 bytes payload keep alive: 1 2.65% <= 1 milliseconds 23.01% <= 2 milliseconds 53.33% <= 3 milliseconds 77.25% <= 4 milliseconds 91.47% <= 5 milliseconds 98.58% <= 6 milliseconds 99.99% <= 7 milliseconds 100.00% <= 7 milliseconds 11764.71 requests per second ====== LRANGE_500 (first 450 elements) ====== 10000 requests completed in 1.22 seconds 50 parallel clients 3 bytes payload keep alive: 1 1.01% <= 1 milliseconds 9.09% <= 2 milliseconds 28.25% <= 3 milliseconds 50.31% <= 4 milliseconds 68.06% <= 5 milliseconds 81.18% <= 6 milliseconds 90.78% <= 7 milliseconds 96.96% <= 8 milliseconds 99.43% <= 9 milliseconds 100.00% <= 9 milliseconds 8196.72 requests per second ====== LRANGE_600 (first 600 elements) ====== 10000 requests completed in 1.57 seconds 50 parallel clients 3 bytes payload keep alive: 1 0.61% <= 1 milliseconds 4.90% <= 2 milliseconds 14.77% <= 3 milliseconds 28.67% <= 4 milliseconds 44.56% <= 5 milliseconds 59.45% <= 6 milliseconds 72.38% <= 7 milliseconds 82.29% <= 8 milliseconds 90.01% <= 9 milliseconds 95.42% <= 10 milliseconds 98.34% <= 11 milliseconds 99.78% <= 12 milliseconds 100.00% <= 12 milliseconds 6357.28 requests per second ====== MSET (10 keys) ====== 10000 requests completed in 0.19 seconds 50 parallel clients 3 bytes payload keep alive: 1 68.40% <= 1 milliseconds 98.61% <= 2 milliseconds 100.00% <= 3 milliseconds 53763.44 requests per second [root@localhost toutou]#
vredis-cli
2.1 簡介
查看redis的連接及讀寫操作
2.2 命令格式
redis-cli -h xx -p yy monitor
2.3 實例:

2.4 redis-cli info:
Redis 監控最直接的方法就是使用系統提供的 info 命令,只需要執行下面一條命令,就能獲得 Redis 系統的狀態報告。
# Server
redis_version:5.0.2 # Redis 的版本
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:bf5d1747be5380f
redis_mode:standalone
os:Linux 2.6.32-220.7.1.el6.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll
gcc_version:4.4.7 #gcc版本
process_id:49324 # 當前 Redis 服務器進程id
run_id:bbd7b17efcf108fdde285d8987e50392f6a38f48
tcp_port:6379
uptime_in_seconds:1739082 # 運行時間(秒)
uptime_in_days:20 # 運行時間(天)
hz:10
lru_clock:1734729
config_file:/home/s/apps/RedisMulti_video_so/conf/zzz.conf
# Clients
connected_clients:1 #連接的客戶端數量
client_longest_output_list:0
client_biggest_input_buf:0
blocked_clients:0
# Memory
used_memory:821848 #Redis分配的內存總量
used_memory_human:802.59K
used_memory_rss:85532672 #Redis分配的內存總量(包括內存碎片)
used_memory_peak:178987632
used_memory_peak_human:170.70M #Redis所用內存的高峰值
used_memory_lua:33792
mem_fragmentation_ratio:104.07 #內存碎片比率
mem_allocator:tcmalloc-2.0
# Persistence
loading:0
rdb_changes_since_last_save:0 #上次保存數據庫之后,執行命令的次數
rdb_bgsave_in_progress:0 #后台進行中的 save 操作的數量
rdb_last_save_time:1410848505 #最后一次成功保存的時間點,以 UNIX 時間戳格式顯示
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:0
rdb_current_bgsave_time_sec:-1
aof_enabled:0 #redis是否開啟了aof
aof_rewrite_in_progress:0
aof_rewrite_scheduled:0
aof_last_rewrite_time_sec:-1
aof_current_rewrite_time_sec:-1
aof_last_bgrewrite_status:ok
aof_last_write_status:ok
# Stats
total_connections_received:5705 #運行以來連接過的客戶端的總數量
total_commands_processed:204013 # 運行以來執行過的命令的總數量
instantaneous_ops_per_sec:0
rejected_connections:0
sync_full:0
sync_partial_ok:0
sync_partial_err:0
expired_keys:34401 #運行以來過期的 key 的數量
evicted_keys:0 #運行以來刪除過的key的數量
keyspace_hits:2129 #命中key 的次數
keyspace_misses:3148 #沒命中key 的次數
pubsub_channels:0 #當前使用中的頻道數量
pubsub_patterns:0 #當前使用中的模式數量
latest_fork_usec:4391
# Replication
role:master #當前實例的角色master還是slave
connected_slaves:0
master_repl_offset:0
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
# CPU
used_cpu_sys:1551.61
used_cpu_user:1083.37
used_cpu_sys_children:2.52
used_cpu_user_children:16.79
# Keyspace
db0:keys=3,expires=0,avg_ttl=0 #各個數據庫的 key 的數量,以及帶有生存期的 key 的數量
redis-cli info
結果會返回 Server、Clients、Memory、Persistence、Stats、Replication、CPU、Keyspace 8個部分。從info大返回結果中提取相關信息,就可以達到有效監控的目的。
vshowlog
3.1 簡介
redis的slowlog是redis用於記錄記錄慢查詢執行時間的日志系統。由於slowlog只保存在內存中,因此slowlog的效率很高,完全不用擔心會影響到redis的性能。Slowlog是Redis從2.2.12版本引入的一條命令。
3.2 命令格式
在redis-cli中有關於slowlog的設置:
CONFIG SET slowlog-log-slower-than 6000
CONFIG SET slowlog-max-len 25
3.3 實例:

vRedisLive
4.1 簡介
RedisLive是由Python編寫的開源的圖形化監控工具。核心服務部分只包括一個web服務和基於Redis自帶的Info命令以及monitor命令的監控服務。支持多實例監控,監控信息可以使用redis存儲和sqlite持久化存儲。
4.2 安裝
4.2.1 安裝依賴環境
RedisLive是由Python2.X編寫的,所以最好使用Python2.7來運行RedisLive,在CentOS 7中預安裝了Python2.7,但沒有安裝Python的包管理器pip。
yum install epel-release
sudo yum install python-pip
pip install --upgrade pip
pip install tornado
pip install redis
pip install python-dateutil
4.2.2 安裝RedisLive
git clone https://github.com/nkrode/RedisLive.git
4.2.3 修改配置文件redis-live.conf
cd RedisLive/src
//按照以下方式修改配置文件
{
"RedisServers":
[
#在此處添加需要監控的redis實例
{
"server": "127.0.0.1", #redis監聽地址,此處為本機
"port" : 6379, #redis端口號,可以通過lsof -i | grep redis-ser查看 redis-server端口號
"password" : "some-password" #redis認證密碼,如果沒有可以刪除該行,注意json格式
}
],
"DataStoreType" : "redis", #監控數據存儲方案的配置,可選擇redis或sqllite
#用來存儲監控數據的 Redis 實例
"RedisStatsServer":
{
"server" : "127.0.0.1",
"port" : 6379,
"password" : "some-password"
},
#監控數據持久化數據存儲配置
"SqliteStatsStore" :
{
"path": "db/redislive.sqlite" #redis數據文件
}
}
redis-live.conf的配置可以參考redis-live.conf.example
4.3 啟動
啟動監控服務,每60秒監控一次
./redis-monitor.py --duration=60
再次開啟一個終端,進入/root/RedisLive/src目錄,啟動web服務
./redis-live.py
4.4 效果圖

vredis-faina
5.1 簡介
5.1.1 背景
redis-faina是由Instagram開發並開源的一個 Redis 查詢分析小工具。Instagram團隊曾經使用 PGFouine 來作為其PostgreSQL的查詢分析工具,他們覺得Redis也需要一個類似的工具來進行query分析工作,於是開發了 redis-faina。
5.1.1 概念
redis-faina 是通過Redis的 MONITOR命令來實現的,通過對在Redis上執行的query進行監控,統計出一段時間的query特性。
5.2 安裝
git clone https://github.com/facebookarchive/redis-faina.git
5.3 命令介紹
[root@localhost toutou]# cd redis-faina/
[root@localhost redis-faina]# ls
heroku-redistogo-faina.sh LICENSE README.md redis-faina.py
[root@localhost redis-faina]# ./redis-faina.py -h
usage: redis-faina.py [-h] [--prefix-delimiter PREFIX_DELIMITER]
[--redis-version REDIS_VERSION]
[input]
positional arguments:
input File to parse; will read from stdin otherwise
optional arguments:
-h, --help show this help message and exit
--prefix-delimiter PREFIX_DELIMITER
String to split on for delimiting prefix and rest of
key
--redis-version REDIS_VERSION
Version of the redis server being monitored
[root@localhost redis-faina]#
其中 --prefix-delimiter 主要用於統計前綴的key的數據。
可以通過 redis MONITOR 命令以及管道進行分析,例如:
redis-cli -p 6379 MONITOR | head -n | ./redis-faina.py [options]
或者
redis-cli -p 6379 MONITOR > outfile.txt
./redis-faina.py ./outfile.txt
Overall Stats
========================================
Lines Processed 117773
Commands/Sec 11483.44
Top Prefixes
========================================
friendlist 69945
followedbycounter 25419
followingcounter 10139
recentcomments 3276
queued 7
Top Keys
========================================
friendlist:zzz:1:2 534
followingcount:zzz 227
friendlist:zxz:1:2 167
friendlist:xzz:1:2 165
friendlist:yzz:1:2 160
friendlist:gzz:1:2 160
friendlist:zdz:1:2 160
friendlist:zpz:1:2 156
Top Commands
========================================
SISMEMBER 59545
HGET 27681
HINCRBY 9413
SMEMBERS 9254
MULTI 3520
EXEC 3520
LPUSH 1620
EXPIRE 1598
Command Time (microsecs)
========================================
Median 78.25
75% 105.0
90% 187.25
99% 411.0
Heaviest Commands (microsecs)
========================================
SISMEMBER 5331651.0
HGET 2618868.0
HINCRBY 961192.5
SMEMBERS 856817.5
MULTI 311339.5
SADD 54900.75
SREM 40771.25
EXEC 28678.5
Slowest Calls
========================================
3490.75 "SMEMBERS" "friendlist:zzz:1:2"
2362.0 "SMEMBERS" "friendlist:xzz:1:3"
2061.0 "SMEMBERS" "friendlist:zpz:1:2"
1961.0 "SMEMBERS" "friendlist:yzz:1:2"
1947.5 "SMEMBERS" "friendlist:zpz:1:2"
1459.0 "SISMEMBER" "friendlist:hzz:1:2" "zzz"
1416.25 "SMEMBERS" "friendlist:zhz:1:2"
1389.75 "SISMEMBER" "friendlist:zzx:1:2" "zzz"
v博客總結
關於Redis的監控工具還有很多,這里就不一一列舉了,下面給出其它幾款優秀的Redis監控工具鏈接,感興趣的可以看看。
其他監控工具:
- https://github.com/junegunn/redis-stat
- https://github.com/steelThread/redmon
- https://github.com/oliver006/redis_exporter
作 者:請叫我頭頭哥
出 處:http://www.cnblogs.com/toutou/
關於作者:專注於基礎平台的項目開發。如有問題或建議,請多多賜教!
版權聲明:本文版權歸作者和博客園共有,歡迎轉載,但未經作者同意必須保留此段聲明,且在文章頁面明顯位置給出原文鏈接。
特此聲明:所有評論和私信都會在第一時間回復。也歡迎園子的大大們指正錯誤,共同進步。或者直接私信我
聲援博主:如果您覺得文章對您有幫助,可以點擊文章右下角【推薦】一下。您的鼓勵是作者堅持原創和持續寫作的最大動力!
