1.首先要配置為開漏輸出。而一般的IO輸出模式推挽輸出不可以。因為
推挽輸出:可以輸出高,低電平,連接數字器件;推挽結構一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導通的時候另一個截止。高低電平由IC的電源低定。
開漏輸出:輸出端相當於三極管的集電極。要得到高電平狀態需要上拉電阻才行,適合於做電流型的驅動,其吸收電流的能力相對強(一般20mA以內)。
GPIO_Mode_Out_OD 開漏輸出---IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現輸出高電平。當輸出為1時,IO口的狀態由上拉電阻拉高電平,但由於是開漏輸出模式,這樣IO口也就可以由外部電路改變為低電平或不變。可以讀IO輸入電平變化,實現C51的IO雙向功能。
GPIO_Mode_Out_PP 推挽輸出---IO輸出0-接GND,IO輸出1 -接VCC,讀輸入值是未知的。
1) 推挽輸出
可以輸出高、低電平,連接數字器件;推挽結構一般是指兩個三極管分別受兩個互補信號的控制,總是在一個三極管導通的時候另一個截止。高低電平由IC的電源決定。
推挽電路是兩個參數相同的三極管或MOSFET,以推挽方式存在於電路中,各負責正負半周的波形放大任務,電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關速度。
2) 開漏輸出
輸出端相當於三極管的集電極,要得到高電平狀態需要上拉電阻才行。適合於做電流型的驅動,其吸收電流的能力相對強(一般20mA以內)。開漏形式的電路有以下幾個特點:
1、利用外部電路的驅動能力,減少IC內部的驅動。當IC內部MOSFET導通時,驅動電流是從外部的VCC流經上拉電阻、MOSFET到GND。IC內部僅需很小的柵極驅動電流。
2、一般來說,開漏是用來連接不同電平的器件,匹配電平用的,因為開漏引腳不連接外部的上拉電阻時,只能輸出低電平,如果需要同時具備輸出高電平的功能,則需要接上拉電阻,很好的一個優點是通過改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉換的速度。阻值越大,速度越低功耗越小,所以負載電阻的選擇要兼顧功耗和速度。)
3、開漏輸出提供了靈活的輸出方式,但是也有其弱點,就是帶來上升沿的延時。因為上升沿是通過外接上拉無源電阻對負載充電,所以當電阻選擇小時延時就小,但功耗大;反之延時大功耗小。所以如果對延時有要求,則建議用下降沿輸出。
4、可以將多個開漏輸出連接到一條線上。通過一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關系,即“線與”。可以簡單的理解為:在所有引腳連在一起時,外接一上拉電阻,如果有一個引腳輸出為邏輯0,相當於接地,與之並聯的回路“相當於被一根導線短路”,所以外電路邏輯電平便為0,只有都為高電平時,與的結果才為邏輯1。
關於推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時下面的PNP三極管截止,而上面NPN三極管導通,輸出電平VS+;當比較器輸出低電平時則恰恰相反,PNP三極管導通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。
