主題:對即將上映的大偵探皮卡丘電影保持什么態度?
主要內容
蒂姆·古德曼(賈斯提斯·史密斯 飾) 為尋找下落不明的父親來到萊姆市,意外與父親的前寶可夢搭檔大偵探皮卡丘(瑞恩·雷諾茲 配音)相遇,並驚訝地發現自己是唯一能聽懂皮卡丘說話的人類,他們決定組隊踏上揭開真相的刺激冒險之路。探案過程中他們邂逅了各式各樣的寶可夢,並意外發現了一個足以毀滅整個寶可夢宇宙的驚天陰謀。
爬取對象:貓眼電影影評
爬取限制:pc端無法獲取影評(移動端可以)
爬取內容:
爬取評論部分的用戶ID、用戶名、評論、評分、時間五項。
爬取的json數據切入口:http://m.maoyan.com/mmdb/comments/movie/346629.json?_v_=yes&offset=0&startTime=2019-05-09%2022%3A25%3A03
爬取結果存入CSV以及數據庫
詞頻及詞語顯示
評論者性別分析
這部電影除去未知性別的,在已知性別的評論者男性的比例比較多,說明這部電影男性的
愛好者比較多。
評論者評分等級分析
根據上面分餅圖可得滿分的占了70%左右,4.5分以上占了7.4%左右,可知這部電影的
評價十分高,應該是非常好看的,值得去觀看。
城市分布顯示
總結
對於此次影評的分析,可以看出在即將上映的前夕,大部分影迷對於這部電影懷抱着回憶童年的心態,皮卡丘的名字被大多數人提及,證明絕大部分群體應該都觀看過寵物小精靈,決大部分人對這部電影充滿了期待,從城市分布可以看出觀影群體主要以一二線城市為主。
全部代碼
import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
import sqlite3
import pandas as pd
import time
import pandas
import random
import json
#設置合理的user-agent,爬取數據函數
def getData(url):
headers =[
{'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36','Cookie': '_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'},
{ 'User-Agent': 'Mozilla / 5.0(Linux;Android 6.0; Nexus 5 Build / MRA58N) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 73.0 .3683.103Mobile Safari / 537.36','Cookie':'_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'},
{'User-Agent': 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10','Cookie':'_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'}
]
# proxies = [{'https': 'https://120.83.111.194:9999','http':'http://14.20.235.120:808'},{"http": "http://119.131.90.115:9797",
# "https": "https://14.20.235.96:9797"}]
get=requests.get(url, headers=headers[random.randint(0,2)]);
get.encoding = 'utf-8'
return get
#數據處理函數
def dataProcess(data):
data = json.loads(data.text)['cmts']
allData = []
for i in data:
dataList = {}
dataList['id'] = i['id']
dataList['nickName'] = i['nickName']
dataList['cityName'] = i['cityName'] if 'cityName' in i else '' # 處理cityName不存在的情況
dataList['content'] = i['content'].replace('\n', ' ', 10) # 處理評論內容換行的情況
dataList['score'] = i['score']
dataList['startTime'] = i['startTime']
if "gender" in i:
dataList['gendar'] = i["gender"]
else:
dataList['gendar'] = i["gender"] = 0
allData.append(dataList)
return allData
allData=[]
for i in range(67):
get=getData('http://m.maoyan.com/mmdb/comments/movie/346629.json?_v_=yes&offset={}&startTime=2019-05-09%2022%3A25%3A03'.format(i*15))
allData.extend(dataProcess(get))
#處理后的數據保存為csv文件
pd.Series(allData)
newsdf=pd.DataFrame(allData)
newsdf.to_csv('news.csv',encoding='utf-8')
# #把csv文件保存到sqlite
# newsdf = pd.read_csv('news.csv')
# with sqlite3.connect('sqlitetest.sqlite') as db:
# newsdf.to_sql('data',con = db)
# 評論者性別分布可視化
def sexProcess(gender):
from pyecharts import Pie
list_num = []
list_num.append(gender.count(0)) # 未知
list_num.append(gender.count(1)) # 男
list_num.append(gender.count(2)) # 女
attr = ["未知","男","女"]
pie = Pie("性別餅圖",title_pos="center")
pie.add("", attr, list_num,is_label_show=True)
pie.render("sex_pie.html")
gendar=[]
for i in allData:
gendar.append(i['gendar'])
sexProcess(gendar)
# 評論者評分等級環狀餅圖
def scoreProcess(scores):
from pyecharts import Pie
list_num = []
list_num.append(scores.count(0))
list_num.append(scores.count(0.5))
list_num.append(scores.count(1))
list_num.append(scores.count(1.5))
list_num.append(scores.count(2))
list_num.append(scores.count(2.5))
list_num.append(scores.count(3))
list_num.append(scores.count(3.5))
list_num.append(scores.count(4))
list_num.append(scores.count(4.5))
list_num.append(scores.count(5))
attr = ["0", "0.5", "1","1.5","2","2.5", "3", "3.5","4","4.5","5"]
pie = Pie("評分等級環狀餅圖",title_pos="center")
pie.add("", attr, list_num, is_label_show=True,
label_text_color=None,
radius=[40, 75],
legend_orient="vertical",
legend_pos="left",
legend_top="100px",
center=[50,60]
)
pie.render("score_pie.html")
scores=[]
for i in allData:
scores.append(i['score'])
scoreProcess(scores)
# 觀眾分布圖
def cityProcess(citysTotal):
from pyecharts import Geo
geo =Geo("《何以為家》觀眾分布", title_color='#fff', title_pos='center',
width=1200,height = 600, background_color = '#404a95')
attr, value = geo.cast(citysTotal)
geo.add("", attr, value, is_visualmap=True, visual_range=[0, 100], visual_text_color='#fff',
legend_pos = 'right', is_geo_effect_show = True, maptype='china',
symbol_size=10)
geo.render("city_geo.html")
# 城市名稱的處理
citysTotal={}
coordinatesJson = pd.read_json('city_coordinates.json',encoding='utf-8')
for i in allData:
for j in coordinatesJson:
if str(i['cityName']) in str(j) :
if str(j) not in citysTotal:
citysTotal[str(j)]=1
else:
citysTotal[str(j)]=citysTotal[str(j)]+1
break
cityProcess(citysTotal)