Oracle體系結構學習筆記


Oracle體系結構由實例和一組數據文件組成,實例由SGA內存區,SGA意思是共享內存區,由share pool(共享池)、data buffer(數據緩沖區)、log buffer(日志緩沖區)組成
在這里插入圖片描述

SGA內存區的share pool是解析SQL並保存執行計划的,然后SQL根據執行計划獲取數據時先看data buffer里是否有數據,沒數據才從磁盤讀,然后還是讀到data buffer里,下次就直接讀data buffer的,當SQL更新時,data buffer的數據就必須寫入磁盤備份,為了保護這些數據,才有log buffer,這就是大概的原理簡介
系統結構關系圖如圖,圖來自《收獲,不止SQL優化》一書:在這里插入圖片描述

下面介紹共享池、數據緩沖、日志緩沖方面調優的例子

共享池相關例子

未使用使用綁定變量的情況,進行一下批量寫數據,在登錄系統,經常用的sql是select * from sys_users where username='admin'或者什么什么的,假如有很多用戶登錄,就需要執行很多次這樣類似的sql,能不能用一條SQL代表?意思是不需要Oracle優化器每次都解析sql獲取執行計划,對於這種類似的sql是沒必要的,Oracle提供了綁定變量的方法,可以用於調優sql,然后一堆sql就可以用

select * from sys_users where username=:x

這里用一個變量x表示,具體例子如下,

新建一張表來測試

create table t (x int);

不使用綁定遍歷,批量寫數據

begin 
	for i in 1 .. 1000
	loop
		execute immediate
		'insert into t values('|| i ||')';
		commit;
	end loop;
end;
/

輸出

已用時間: 00: 00: 00.80

加上綁定遍歷,綁定變量是用:x的形式

begin 
	for i in 1 .. 100
	loop
		execute immediate
		'insert into t values( :x )' using i;
	commit;
	end loop;
end;
/

已用時間: 00: 00: 00.05

數據緩沖相關例子
這里介紹和數據緩存相關例子

(1) 清解析緩存

//創建一個表來測試
SQL> create table t as select * from dba_objects;
表已創建。
//設置打印行數
SQL> set linesize 1000
//設置執行計划開啟
SQL> set autotrace on
//打印出時間
SQL> set timing on
//查詢一下數據
SQL> select count(1) from t;

  COUNT(1)
----------
     72043

已用時間:  00: 00: 00.10

//清一下緩沖區緩存(ps:這個sql不能隨便在生產環境執行)
SQL> alter system flush buffer_cache;
系統已更改。
已用時間:  00: 00: 00.08

//清一下共享池緩存(ps:這個sql不能隨便在生產環境執行)
SQL> alter system flush shared_pool;

//再次查詢,發現查詢快了
SQL> select count(1) from t;

  COUNT(1)
----------
     72043

已用時間:  00: 00: 00.12

SQL>

日志緩沖相關例子

這里說明一下,日志關閉是可以提供性能的,不過在生生產環境還是不能隨便用,只能說是一些特定創建,SQL如:

alter table [表名] nologging;

調優拓展知識
這些是看《收獲,不止SQL優化》一書的小記

(1) 批量寫數據事務問題
對於循環批量事務提交的問題,commit放在循環內和放在循環外的區別,

放在循環內,每次執行就提交一次事務,這種時間相對比較少的

begin 
	for i in 1 .. 1000
	loop
		execute immediate
		'insert into t values('|| i ||')';
		commit;
	end loop;
end;

放在循環外,sql循環成功,再提交一次事務,這種時間相對比較多一點

begin 
	for i in 1 .. 1000
	loop
		execute immediate
		'insert into t values('|| i ||')';
	end loop;
	commit;
end;

《收獲,不止SQL優化》一書提供的腳本,用於查看邏輯讀、解析、事務數等等情況:

select s.snap_date,
       decode(s.redosize, null, '--shutdown or end--', s.currtime) "TIME",
       to_char(round(s.seconds / 60, 2)) "elapse(min)",
       round(t.db_time / 1000000 / 60, 2) "DB time(min)",
       s.redosize redo,
       round(s.redosize / s.seconds, 2) "redo/s",
       s.logicalreads logical,
       round(s.logicalreads / s.seconds, 2) "logical/s",
       physicalreads physical,
       round(s.physicalreads / s.seconds, 2) "phy/s",
       s.executes execs,
       round(s.executes / s.seconds, 2) "execs/s",
       s.parse,
       round(s.parse / s.seconds, 2) "parse/s",
       s.hardparse,
       round(s.hardparse / s.seconds, 2) "hardparse/s",
       s.transactions trans,
       round(s.transactions / s.seconds, 2) "trans/s"
  from (select curr_redo - last_redo redosize,
               curr_logicalreads - last_logicalreads logicalreads,
               curr_physicalreads - last_physicalreads physicalreads,
               curr_executes - last_executes executes,
               curr_parse - last_parse parse,
               curr_hardparse - last_hardparse hardparse,
               curr_transactions - last_transactions transactions,
               round(((currtime + 0) - (lasttime + 0)) * 3600 * 24, 0) seconds,
               to_char(currtime, 'yy/mm/dd') snap_date,
               to_char(currtime, 'hh24:mi') currtime,
               currsnap_id endsnap_id,
               to_char(startup_time, 'yyyy-mm-dd hh24:mi:ss') startup_time
          from (select a.redo last_redo,
                       a.logicalreads last_logicalreads,
                       a.physicalreads last_physicalreads,
                       a.executes last_executes,
                       a.parse last_parse,
                       a.hardparse last_hardparse,
                       a.transactions last_transactions,
                       lead(a.redo, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_redo,
                       lead(a.logicalreads, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_logicalreads,
                       lead(a.physicalreads, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_physicalreads,
                       lead(a.executes, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_executes,
                       lead(a.parse, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_parse,
                       lead(a.hardparse, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_hardparse,
                       lead(a.transactions, 1, null) over(partition by b.startup_time order by b.end_interval_time) curr_transactions,
                       b.end_interval_time lasttime,
                       lead(b.end_interval_time, 1, null) over(partition by b.startup_time order by b.end_interval_time) currtime,
                       lead(b.snap_id, 1, null) over(partition by b.startup_time order by b.end_interval_time) currsnap_id,
                       b.startup_time
                  from (select snap_id,
                               dbid,
                               instance_number,
                               sum(decode(stat_name, 'redo size', value, 0)) redo,
                               sum(decode(stat_name,
                                          'session logical reads',
                                          value,
                                          0)) logicalreads,
                               sum(decode(stat_name,
                                          'physical reads',
                                          value,
                                          0)) physicalreads,
                               sum(decode(stat_name, 'execute count', value, 0)) executes,
                               sum(decode(stat_name,
                                          'parse count (total)',
                                          value,
                                          0)) parse,
                               sum(decode(stat_name,
                                          'parse count (hard)',
                                          value,
                                          0)) hardparse,
                               sum(decode(stat_name,
                                          'user rollbacks',
                                          value,
                                          'user commits',
                                          value,
                                          0)) transactions
                          from dba_hist_sysstat
                         where stat_name in
                               ('redo size',
                                'session logical reads',
                                'physical reads',
                                'execute count',
                                'user rollbacks',
                                'user commits',
                                'parse count (hard)',
                                'parse count (total)')
                         group by snap_id, dbid, instance_number) a,
                       dba_hist_snapshot b
                 where a.snap_id = b.snap_id
                   and a.dbid = b.dbid
                   and a.instance_number = b.instance_number
                 order by end_interval_time)) s,
       (select lead(a.value, 1, null) over(partition by b.startup_time order by b.end_interval_time) - a.value db_time,
               lead(b.snap_id, 1, null) over(partition by b.startup_time order by b.end_interval_time) endsnap_id
          from dba_hist_sys_time_model a, dba_hist_snapshot b
         where a.snap_id = b.snap_id
           and a.dbid = b.dbid
           and a.instance_number = b.instance_number
           and a.stat_name = 'DB time') t
 where s.endsnap_id = t.endsnap_id
 order by s.snap_date, time desc;


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM