Spark——local模式環境搭建
一、Spark運行模式介紹
1、本地模式(loca模式):spark單機運行,一般用戶測試和開發使用
2、Standalone模式:構建一個主從結構(Master+Slave)的spark集群,spark運行在集群中。
3、Spark on yarn 模式:Spark客戶端直接連接Yarn,不用構建Spark集群
4、Spark on Mesos 模式:Spark客戶端直接連接Mesos.不需要額外構建Spark集群
二、local模式
1、將編譯好的spark包解壓到指定目錄,我這里是使用spark源碼編譯的,編譯過程看上篇博客
tar -zxvf ./spark-2.1.0-bin-2.6.0-cdh5.7.0.tgz -C /home/hadoop/app/
2、配置環境變量
export JAVA_HOME=/home/hadoop/app/jdk1.8.0_131 export HADOOP_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0 export HIVE_HOME=/home/hadoop/app/hive-1.1.0-cdh5.7.0 export MAVEN_HOME=/home/hadoop/app/apache-maven-3.5.4 export SCALA_HOME=/home/hadoop/app/scala-2.11.8 export SPARK_HOME=/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0 export PATH=$SPARK_HOME/bin:$SCALA_HOME/bin:$MAVEN_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin: $PATH
3、啟動local模式
spark-shell --master local[2]
啟動過程如下:
[hadoop@hadoop01 ~]$ spark-shell --master local[2] Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 18/10/09 19:49:58 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 18/10/09 19:50:13 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0 18/10/09 19:50:13 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException 18/10/09 19:50:15 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException Spark context Web UI available at http://192.168.44.183:4040 Spark context available as 'sc' (master = local[2], app id = local-1539085800463). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.1.0 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131) Type in expressions to have them evaluated. Type :help for more information. scala>
啟動后可以通過UI界面查看詳情:http://192.168.44.183:4040