The best elasticsearch highlevel java rest api-----bboss
Elasticsearch Sliced Scroll分頁檢索案例分享
我們在文章《Elasticsearch Scroll分頁檢索案例分享》中介紹了elasticsearch scroll的基本用法,本文介紹Elasticsearch Sliced Scroll分頁檢索功能。
1.准備工作
參考文檔《高性能elasticsearch ORM開發庫使用介紹》導入和配置es客戶端
2.定義Sliced Scroll檢索dsl
創建配置文件-在resources目錄下定義文件scroll.xml
esmapper/scroll.xml
文件內容包含Sliced Scroll檢索dsl語句-scrollSliceQuery
<property name="scrollSliceQuery">
<![CDATA[
{
"slice": {
"id": $id,
"max": $max
},
"size":$size,
"query": {
"term" : {
"gc.jvmGcOldCount" : 3
}
}
}
]]>
</property>
3.串行方式執行slice檢索
/** * 串行方式執行slice scroll操作 */
@Test
public void testSliceScroll() {
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml");
List<String> scrollIds = new ArrayList<>();
long starttime = System.currentTimeMillis();
//scroll slice分頁檢索
int max = 6;
long realTotalSize = 0;
for (int i = 0; i < max; i++) {
Map params = new HashMap();
params.put("id", i);
params.put("max", max);//最多6個slice,不能大於share數
params.put("size", 100);//每頁100條記錄
ESDatas<Map> sliceResponse = clientUtil.searchList("agentstat-*/_search?scroll=1m",
"scrollSliceQuery", params,Map.class);
List<Map> sliceDatas = sliceResponse.getDatas();
realTotalSize = realTotalSize + sliceDatas.size();
long totalSize = sliceResponse.getTotalSize();
String scrollId = sliceResponse.getScrollId();
if (scrollId != null)
scrollIds.add(scrollId);
System.out.println("totalSize:" + totalSize);
System.out.println("scrollId:" + scrollId);
if (sliceDatas != null && sliceDatas.size() >= 100) {//每頁100條記錄,迭代scrollid,遍歷scroll分頁結果
do {
sliceResponse = clientUtil.searchScroll("1m", scrollId, Map.class);
String sliceScrollId = sliceResponse.getScrollId();
if (sliceScrollId != null)
scrollIds.add(sliceScrollId);
sliceDatas = sliceResponse.getDatas();
if (sliceDatas == null || sliceDatas.size() < 100) {
break;
}
realTotalSize = realTotalSize + sliceDatas.size();
} while (true);
}
}
//打印處理耗時和實際檢索到的數據
long endtime = System.currentTimeMillis();
System.out.println("耗時:"+(endtime - starttime)+",realTotalSize:"+realTotalSize);
//查詢存在es服務器上的scroll上下文信息
String scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
System.out.println(scrolls);
//處理完畢后清除scroll上下文信息
if(scrollIds.size() > 0) {
scrolls = clientUtil.deleteScrolls(scrollIds);
System.out.println(scrolls);
}
//清理完畢后查看scroll上下文信息
scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
System.out.println(scrolls);
}
4.並行方式執行slice檢索
//用來存放實際slice檢索總記錄數
long realTotalSize ;
//輔助方法,用來累計每次scroll獲取到的記錄數
synchronized void incrementSize(int size){
this.realTotalSize = this.realTotalSize + size;
}
/** * 並行方式執行slice scroll操作 */
@Test
public void testParralSliceScroll() {
final ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml");
final List<String> scrollIds = new ArrayList<>();
long starttime = System.currentTimeMillis();
//scroll slice分頁檢索
final int max = 6;
final CountDownLatch countDownLatch = new CountDownLatch(max);//線程任務完成計數器,每個線程對應一個sclice,每運行完一個slice任務,countDownLatch計數減去1
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">int</span> j = <span class="hljs-number">0</span>; j < max; j++) {<span class="hljs-comment">//啟動max個線程,並行處理每個slice任務</span>
<span class="hljs-keyword">final</span> <span class="hljs-keyword">int</span> i = j;
Thread sliceThread = <span class="hljs-keyword">new</span> Thread(<span class="hljs-keyword">new</span> Runnable() {<span class="hljs-comment">//多線程並行執行scroll操作做,每個線程對應一個sclice</span>
<span class="hljs-meta">@Override</span>
<span class="hljs-function"><span class="hljs-keyword">public</span> <span class="hljs-keyword">void</span> <span class="hljs-title">run</span><span class="hljs-params">()</span> </span>{
Map params = <span class="hljs-keyword">new</span> HashMap();
params.put(<span class="hljs-string">"id"</span>, i);
params.put(<span class="hljs-string">"max"</span>, max);<span class="hljs-comment">//最多6個slice,不能大於share數</span>
params.put(<span class="hljs-string">"size"</span>, <span class="hljs-number">100</span>);<span class="hljs-comment">//每頁100條記錄</span>
ESDatas<Map> sliceResponse = clientUtil.searchList(<span class="hljs-string">"agentstat-*/_search?scroll=1m"</span>,
<span class="hljs-string">"scrollSliceQuery"</span>, params,Map.class);
List<Map> sliceDatas = sliceResponse.getDatas();
incrementSize( sliceDatas.size());<span class="hljs-comment">//統計實際處理的文檔數量</span>
<span class="hljs-keyword">long</span> totalSize = sliceResponse.getTotalSize();
String scrollId = sliceResponse.getScrollId();
<span class="hljs-keyword">if</span> (scrollId != <span class="hljs-keyword">null</span>)
scrollIds.add(scrollId);
System.out.println(<span class="hljs-string">"totalSize:"</span> + totalSize);
System.out.println(<span class="hljs-string">"scrollId:"</span> + scrollId);
<span class="hljs-keyword">if</span> (sliceDatas != <span class="hljs-keyword">null</span> && sliceDatas.size() >= <span class="hljs-number">100</span>) {<span class="hljs-comment">//每頁100條記錄,迭代scrollid,遍歷scroll分頁結果</span>
<span class="hljs-keyword">do</span> {
sliceResponse = clientUtil.searchScroll(<span class="hljs-string">"1m"</span>, scrollId, Map.class);
String sliceScrollId = sliceResponse.getScrollId();
<span class="hljs-keyword">if</span> (sliceScrollId != <span class="hljs-keyword">null</span>)
scrollIds.add(sliceScrollId);
sliceDatas = sliceResponse.getDatas();
<span class="hljs-keyword">if</span> (sliceDatas == <span class="hljs-keyword">null</span> || sliceDatas.size() < <span class="hljs-number">100</span>) {
<span class="hljs-keyword">break</span>;
}
incrementSize( sliceDatas.size());<span class="hljs-comment">//統計實際處理的文檔數量</span>
} <span class="hljs-keyword">while</span> (<span class="hljs-keyword">true</span>);
}
countDownLatch.countDown();<span class="hljs-comment">//slice檢索完畢后計數器減1</span>
}
});
sliceThread.start();<span class="hljs-comment">//啟動線程</span>
}
<span class="hljs-keyword">try</span> {
countDownLatch.await();<span class="hljs-comment">//等待所有的線程執行完畢,計數器變成0</span>
} <span class="hljs-keyword">catch</span> (InterruptedException e) {
e.printStackTrace();
}
<span class="hljs-comment">//打印處理耗時和實際檢索到的數據</span>
<span class="hljs-keyword">long</span> endtime = System.currentTimeMillis();
System.out.println(<span class="hljs-string">"耗時:"</span>+(endtime - starttime)+<span class="hljs-string">",realTotalSize:"</span>+realTotalSize);
<span class="hljs-comment">//查詢存在es服務器上的scroll上下文信息</span>
String scrolls = clientUtil.executeHttp(<span class="hljs-string">"_nodes/stats/indices/search"</span>, ClientUtil.HTTP_GET);
// System.out.println(scrolls);
//處理完畢后清除scroll上下文信息
if(scrollIds.size() > 0) {
scrolls = clientUtil.deleteScrolls(scrollIds);
// System.out.println(scrolls);
}
//清理完畢后查看scroll上下文信息
scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
// System.out.println(scrolls);
}
通過串行運行和並行運行結果比較,並行處理的性能要好很多,實際檢索到的文檔數量等價一致。
5.參考文檔
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-scroll.html
6.開發交流
elasticsearch技術交流群:166471282
</div>
</div>