Deep Sparse Representation-based Classification
代碼:https://github.com/mahdiabavisani/DSRC
網絡結構
網絡結構分為:
- 編碼器:接受訓練集與測試集提取特征
- 稀疏編碼層:通過訓練樣本的稀疏線性組合恢復測試集
- 解碼器:將訓練嵌入與已經恢復的測試嵌入映射回數據的原始表示形式
核心觀點
作者在文章中認為測試集中的某個類的分布可以由訓練集中該類分布的線性組合表示。於是稀疏編碼層則是用來找到這種線性組合
網絡整體的優化損失函數與數據集之間的表征系數公式如下