段錯誤 核心已轉儲嘗試解決


1.在進行

gdb python
r XX.py
where

調試時,報出以下錯誤:

1)每次運行都開38個線程,是否是線程超載[New Thread 0x7ffff2fd2700 (LWP 7415)]

[New Thread 0x7ffff27d1700 (LWP 7416)]
[New Thread 0x7fffeffd0700 (LWP 7417)]
[New Thread 0x7fffeb7cf700 (LWP 7418)]
[New Thread 0x7fffe8fce700 (LWP 7419)]
[New Thread 0x7fffe67cd700 (LWP 7420)]
[New Thread 0x7fffe3fcc700 (LWP 7421)]
[New Thread 0x7fffe17cb700 (LWP 7422)]
[New Thread 0x7fffdefca700 (LWP 7423)]
[New Thread 0x7fffdc7c9700 (LWP 7424)]
[New Thread 0x7fffd9fc8700 (LWP 7425)]
[New Thread 0x7fffd77c7700 (LWP 7426)]
[New Thread 0x7fffd4fc6700 (LWP 7427)]
[New Thread 0x7fffd27c5700 (LWP 7428)]
[New Thread 0x7fffcffc4700 (LWP 7429)]
[New Thread 0x7fffcd7c3700 (LWP 7430)]
[New Thread 0x7fffcafc2700 (LWP 7431)]
[New Thread 0x7fffc87c1700 (LWP 7432)]
[New Thread 0x7fffc5fc0700 (LWP 7433)]
[New Thread 0x7fffc37bf700 (LWP 7434)]
[New Thread 0x7fffc0fbe700 (LWP 7435)]
[New Thread 0x7fffbe7bd700 (LWP 7436)]
[New Thread 0x7fffbbfbc700 (LWP 7437)]
[New Thread 0x7fffb97bb700 (LWP 7438)]
[New Thread 0x7fffb6fba700 (LWP 7439)]
[New Thread 0x7fffb47b9700 (LWP 7440)]
[New Thread 0x7fffb1fb8700 (LWP 7441)]
[New Thread 0x7fffaf7b7700 (LWP 7442)]
[New Thread 0x7fffacfb6700 (LWP 7443)]
[New Thread 0x7fffaa7b5700 (LWP 7444)]
[New Thread 0x7fffa7fb4700 (LWP 7445)]
[New Thread 0x7fffa57b3700 (LWP 7446)]
[New Thread 0x7fffa2fb2700 (LWP 7447)]
[New Thread 0x7fffa07b1700 (LWP 7448)]
[New Thread 0x7fff9dfb0700 (LWP 7449)]
[New Thread
0x7fff9b7af700 (LWP 7450)] [New Thread 0x7fff98fae700 (LWP 7451)] [New Thread 0x7fff967ad700 (LWP 7452)] [New Thread 0x7fff93fac700 (LWP 7453)]

 

2)現在報出:

ERROR (theano.gpuarray): Could not initialize pygpu, support disabled
。。。
  File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init
  File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_init
GpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal

先不解決這個,先嘗試測試一下:

發現,在import keras,也會報上述同樣的錯誤!

 conda install mkl
conda install mkl-service
#使用以上兩句均顯示:
# All requested packages already installed.

conda install blas

 依舊不可以導入keras包。

 3)將原有的conda環境刪除,又新創建了環境,用conda安裝了mkl之后,嘗試import keras之后,仍然報錯:

Using Theano backend.
~/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. 
If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than " ERROR (theano.gpuarray): Could not initialize pygpu, support disabled Traceback (most recent call last): File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 227, in <module> use(config.device) File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 214, in use init_dev(device, preallocate=preallocate) File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 99, in init_dev **args) File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_init GpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal

在我的.theanorc配置文件中,是這么寫的:

[global]
floatX = float32
device =cuda1

 

嘗試去掉cuda編號?居然成功了!

Using Theano backend.
~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano.
If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than " Using cuDNN version 7201 on context None Mapped name None to device cuda: GeForce GTX 1080 Ti (0000:03:00.0)

 

接下來嘗試解決 上述的用戶警告。

由於theano已經是1.0.4最新版本,無法再進行更新,只能嘗試將cuDNN版本降級。

但是使用conda list查看所有安裝的包:

cudnn                     6.0.21                cuda8.0_0    https://mirrors.tuna.tsinghua.edu.cn/a
#嘗試此命令查看pygpu是否可用
DEVICE="cuda" python -c "import pygpu; pygpu.test()"

 

出現以下問題:https://github.com/Theano/Theano/issues/6420

此幫助里說,如果不是使用多個GPU可以忽略test_collectives error。

#嘗試以下,
python test_gpu.py
~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7.
  warnings.warn("Your cuDNN version is more recent than "
Using cuDNN version 7201 on context None
Mapped name None to device cuda: GeForce GTX 1080 Ti (0000:03:00.0)
[GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.192847 seconds
Result is [1.2317803 1.6187935 1.5227807 ... 2.2077181 2.2996776 1.623233 ]
Used the gpu

 

發現其使用的cudnn版本是7.2,明明是6.0但是卻調用了7.2?

查看cuda的版本信息發現:

nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

 //發現安裝cuda簡直十分麻煩,所以下嘗試一下運行程序。

 

Starting epoch 0...
段錯誤 (核心已轉儲)

 

 

 http://imatlab.lofter.com/post/286ffc_a6ead7

#查看分配占空間的大小
ulimit -a

#顯示
stack size              (kbytes, -s) 8192

 

 

 

也就僅僅8M大小,實在是太小了。

改為ulimit -s 102400,仍舊段錯誤。

試圖將其調整為更大或者unlimit時,報錯:

 

-bash: ulimit: stack size: 無法修改 limit 值: 不允許的操作

 

#使用sudo提示如下:
sudo: ulimit:找不到命令

在limit.conf下加了

 

#*               soft    stack           unlimited

 再使用ulimit -s unlimited就可以用了,但是運行程序發現仍是段錯誤,繼續修改

#max locked memory       (kbytes, -l) 64
#嘗試修改maxloc但是同樣的方法不起作用

——————

終於解決了,在github上keras項目下發布的issue中找到了:

由於本機上的CUDA版本為9,所以又根據教程安裝了CUDA8版本,以及cuDNN6.0版本,之后就可以了!!! 

就是由於CUDA9不適合theano1.0!!!所以必須將版本,降版本之后就沒有上述的warning了,就可以成功跑theano后端的keras代碼了。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM