步驟一:點擊按鈕,彈出沒有缺口的圖片 #步驟二:獲取步驟一的圖片 #步驟三:點擊滑動按鈕,彈出帶缺口的圖片 #步驟四:獲取帶缺口的圖片 #步驟五:對比兩張圖片的所有RBG像素點,得到不一樣像素點的x值,即要移動的距離 #步驟六:模擬人的行為習慣(先勻加速拖動后勻減速拖動),把需要拖動的總距離分成一段一段小的軌跡 #步驟七:按照軌跡拖動,完全驗證 #步驟八:完成登錄 from selenium import webdriver from selenium.webdriver import ActionChains from PIL import Image import time def get_snap(driver): driver.save_screenshot('full_snap.png') page_snap_obj = Image.open('full_snap.png') return page_snap_obj def get_image(driver): img = driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) # 獲取圖片元素坐標 location = img.location # 獲取圖片大小 size = img.size left = location['x'] top = location['y'] right = left+size['width'] bottom = top+size['height'] # 獲取截屏圖片對象 page_snap_obj = get_snap(driver) # crop處理裁剪后的圖片-->獲取裁剪后的圖片對象 image_obj = page_snap_obj.crop((left, top, right, bottom)) # image_obj.show() return image_obj def get_distance(image1, image2): start = 57 threhold = 60 for i in range(start, image1.size[0]): for j in range(image1.size[1]): rgb1 = image1.load()[i, j] rgb2 = image2.load()[i, j] res1 = abs(rgb1[0]-rgb2[0]) res2 = abs(rgb1[1]-rgb2[1]) res3 = abs(rgb1[2]-rgb2[2]) # print(res1,res2,res3) if not (res1 < threhold and res2 < threhold and res3 < threhold): return i-7 return i-7 def get_tracks(distance): distance += 20 #先滑過一點,最后再反着滑動回來 v = 0 t = 0.2 forward_tracks = [] current = 0 mid = distance*3/5 while current < distance: if current < mid: a = 2 else: a = -3 s = v*t+0.5*a*(t**2) v = v+a*t current += s forward_tracks.append(round(s)) #反着滑動到准確位置 back_tracks = [-3, -3, -2, -2, -2, -2, -2, -1, -1, -1] #總共等於-20 return {'forward_tracks': forward_tracks, 'back_tracks': back_tracks} def crack(driver): # 破解滑動認證 # 1、點擊按鈕,得到沒有缺口的圖片 button = driver.find_element_by_class_name('geetest_radar_tip') button.click() # 2、獲取沒有缺口的圖片 image1 = get_image(driver) # 3、點擊滑動按鈕,得到有缺口的圖片 button = driver.find_element_by_class_name('geetest_slider_button') button.click() # 4、獲取有缺口的圖片 image2 = get_image(driver) # 5、對比兩種圖片的像素點,找出位移 distance = get_distance(image1, image2) # 6、模擬人的行為習慣,根據總位移得到行為軌跡 tracks = get_tracks(distance) print(tracks) # 7、按照行動軌跡先正向滑動,后反滑動 button = driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(button).perform() # 正向滑動 for track in tracks['forward_tracks']: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 開始反向滑動 time.sleep(0.5) for back_track in tracks['back_tracks']: ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() # 小范圍震盪一下,進一步迷惑極驗后台,這一步可以極大地提高成功率 ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() # 成功后,然后松開手 time.sleep(0.5) ActionChains(driver).release().perform() def login_cnblogs(username, password): driver = webdriver.Chrome(executable_path=r'E:\chenwei\learning\爬蟲\chromedriver_win32\chromedriver.exe') try: # 1、輸入賬號密碼回車 driver.implicitly_wait(3) driver.get('https://passport.cnblogs.com/user/signin') input_username = driver.find_element_by_id('input1') input_pwd = driver.find_element_by_id('input2') signin = driver.find_element_by_id('signin') input_username.send_keys(username) input_pwd.send_keys(password) signin.click() button = driver.find_element_by_class_name('close') button.click() # 2、破解滑動認證 crack(driver) time.sleep(10) # 睡時間長一點,確定登錄成功 finally: driver.close() if __name__ == '__main__': login_cnblogs(username='xxxxx',password='xxxx')