B+樹索引是B+樹在數據庫中的一種實現,是最常見也是數據庫中使用最為頻繁的一種索引。B+樹中的B代表平衡(balance),而不是二叉(binary),因為B+樹是從最早的平衡二叉樹演化而來的。在講B+樹之前必須先了解二叉查找樹、平衡二叉樹(AVLTree)和平衡多路查找樹(B-Tree),B+樹即由這些樹逐步優化而來。
二叉查找樹
二叉樹具有以下性質:左子樹的鍵值小於根的鍵值,右子樹的鍵值大於根的鍵值。
如下圖所示就是一棵二叉查找樹,
對該二叉樹的節點進行查找發現深度為1的節點的查找次數為1,深度為2的查找次數為2,深度為n的節點的查找次數為n,因此其平均查找次數為 (1+2+2+3+3+3) / 6 = 2.3次
二叉查找樹可以任意地構造,同樣是2,3,5,6,7,8這六個數字,也可以按照下圖的方式來構造:
但是這棵二叉樹的查詢效率就低了。因此若想二叉樹的查詢效率盡可能高,需要這棵二叉樹是平衡的,從而引出新的定義——平衡二叉樹,或稱AVL樹。
平衡二叉樹(AVL Tree)
平衡二叉樹(AVL樹)在符合二叉查找樹的條件下,還滿足任何節點的兩個子樹的高度最大差為1。下面的兩張圖片,左邊是AVL樹,它的任何節點的兩個子樹的高度差<=1;右邊的不是AVL樹,其根節點的左子樹高度為3,而右子樹高度為1;
如果在AVL樹中進行插入或刪除節點,可能導致AVL樹失去平衡,這種失去平衡的二叉樹可以概括為四種姿態:LL(左左)、RR(右右)、LR(左右)、RL(右左)。它們的示意圖如下:
這四種失去平衡的姿態都有各自的定義:
LL:LeftLeft,也稱“左左”。插入或刪除一個節點后,根節點的左孩子(Left Child)的左孩子(Left Child)還有非空節點,導致根節點的左子樹高度比右子樹高度高2,AVL樹失去平衡。
RR:RightRight,也稱“右右”。插入或刪除一個節點后,根節點的右孩子(Right Child)的右孩子(Right Child)還有非空節點,導致根節點的右子樹高度比左子樹高度高2,AVL樹失去平衡。
LR:LeftRight,也稱“左右”。插入或刪除一個節點后,根節點的左孩子(Left Child)的右孩子(Right Child)還有非空節點,導致根節點的左子樹高度比右子樹高度高2,AVL樹失去平衡。
RL:RightLeft,也稱“右左”。插入或刪除一個節點后,根節點的右孩子(Right Child)的左孩子(Left Child)還有非空節點,導致根節點的右子樹高度比左子樹高度高2,AVL樹失去平衡。
B-Tree和B+Tree的區別:
在B+Tree中,所有數據記錄節點都是按照鍵值大小順序存放在同一層的葉子節點上,而非葉子節點上只存儲key值信息,這樣可以大大加大每個節點存儲的key值數量,降低B+Tree的高度。
B樹:
B+樹: