前言
有時候我們在使用Spark中執行Join時候,結果集出現重復的列名,從而導致References ambiguous問題。我們可以用以下方式來解決。
實例
首先模擬一些數據
#In python
from pyspark.mllib.linalg import SparseVector
from pyspark.sql import Row
df1 = sqlContext.createDataFrame([
Row(a=107831, f=SparseVector(
5, {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0})),
Row(a=125231, f=SparseVector(
5, {0: 0.0, 1: 0.0, 2: 0.0047, 3: 0.0, 4: 0.0043})),
])
df2 = sqlContext.createDataFrame([
Row(a=107831, f=SparseVector(
5, {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0})),
Row(a=107831, f=SparseVector(
5, {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0})),
])
為了防止出現重復列名的問題,首先可以指定使用哪張表的列,如下:
df1.join(df2, df1['a'] == df2['a']).select(df1['f']).show(2)
## +--------------------+
## | f|
## +--------------------+
## |(5,[0,1,2,3,4],[0...|
## |(5,[0,1,2,3,4],[0...|
## +--------------------+
當然我們也可以使用別名alias:
from pyspark.sql.functions import col
df1_a = df1.alias("df1_a")
df2_a = df2.alias("df2_a")
df1_a.join(df2_a, col('df1_a.a') == col('df2_a.a')).select('df1_a.f').show(2)
## +--------------------+
## | f|
## +--------------------+
## |(5,[0,1,2,3,4],[0...|
## |(5,[0,1,2,3,4],[0...|
## +--------------------+
除此之外,我們還可以編程式的重命名列來避免模糊列名:
df1_r = df1.select(*(col(x).alias(x + '_df1') for x in df1.columns))
df2_r = df1.select(*(col(x).alias(x + '_df2') for x in df2.columns))
df1_r.join(df2_r, col('a_df1') == col('a_df2')).select(col('f_df1')).show(2)
## +--------------------+
## | f_df1|
## +--------------------+
## |(5,[0,1,2,3,4],[0...|
## |(5,[0,1,2,3,4],[0...|
## +--------------------+
當然還有一種簡單的方法,可以在結果表中只產生一份用於連接的列,
df1.join(df2,['a'])
