kafka工作原理介紹


兩張圖讀懂kafka應用:

Kafka 中的術語 

    broker:中間的kafka cluster,存儲消息,是由多個server組成的集群。
   topic:kafka給消息提供的分類方式。broker用來存儲不同topic的消息數據。
   producer:往broker中某個topic里面生產數據。
   consumer:從broker中某個topic獲取數據。


Kafka 中的術語設計:
1、Broker
      中間的kafka cluster,存儲消息,是由多個server組成的集群。

 

2、topic與消息
  kafka將所有消息組織成多個topic的形式存儲,而每個topic又可以拆分成多個partition,每個partition又由一個一個消息組成。每個消息都被標識了一個遞增序列號代表其進來的先后順序,並按順序存儲在partition中。

 

  這樣,消息就以一個個id的方式,組織起來。

   producer選擇一個topic,生產消息,消息會通過分配策略append到某個partition末尾。
   consumer選擇一個topic,通過id指定從哪個位置開始消費消息。消費完成之后保留id,下次可以從這個位置開始繼續消費,也可以從其他任意位置開始消費。
  上面的id在kafka中稱為offset,這種組織和處理策略提供了如下好處:

   消費者可以根據需求,靈活指定offset消費。
   保證了消息不變性,為並發消費提供了線程安全的保證。每個consumer都保留自己的offset,互相之間不干擾,不存在線程安全問題。
   消息訪問的並行高效性。每個topic中的消息被組織成多個partition,partition均勻分配到集群server中。生產、消費消息的時候,會被路由到指定partition,減少競爭,增加了程序的並行能力。
 增加消息系統的可伸縮性。每個topic中保留的消息可能非常龐大,通過partition將消息切分成多個子消息,並通過負責均衡策略將partition分配到不同server。這樣當機器負載滿的時候,通過擴容可以將消息重新均勻分配。
   保證消息可靠性。消息消費完成之后不會刪除,可以通過重置offset重新消費,保證了消息不會丟失。
   靈活的持久化策略。可以通過指定時間段(如最近一天)來保存消息,節省broker存儲空間。
   備份高可用性。消息以partition為單位分配到多個server,並以partition為單位進行備份。備份策略為:1個leader和N個followers,leader接受讀寫請求,followers被動復制leader。leader和followers會在集群中打散,保證partition高可用。


3、Partitions
       每個Topics划分為一個或者多個Partition,並且Partition中的每條消息都被標記了一個sequential id ,也就是offset,並且存儲的數據是可配置存儲時間的。

 

4、producer
  producer生產消息需要如下參數:

   topic:往哪個topic生產消息。
   partition:往哪個partition生產消息。
   key:根據該key將消息分區到不同partition。
   message:消息。

5、consumer
  傳統消息系統有兩種模式:

   隊列
   發布訂閱
  kafka通過consumer group將兩種模式統一處理:

  每個consumer將自己標記consumer group名稱,之后系統會將consumer group按名稱分組,將消息復制並分發給所有分組,每個分組只有一個consumer能消費這條消息。如下圖:

 

  於是推理出兩個極端情況:

   當所有consumer的consumer group相同時,系統變成隊列模式
   當每個consumer的consumer group都不相同時,系統變成發布訂閱
  注意:

  1、Consumer Groups 提供了topics和partitions的隔離, 如上圖Consumer Group A中的consumer-C2掛掉,consumer-C1會接收P1,P2,即一個consumer Group中有其他consumer掛掉后能夠重新平衡。如下圖:

 

  2、多consumer並發消費消息時,容易導致消息亂序,通過限制消費者為同步,可以保證消息有序,但是這大大降低了程序的並發性。

  kafka通過partition的概念,保證了partition內消息有序性,緩解了上面的問題。partition內消息會復制分發給所有分組,每個分組只有一個consumer能消費這條消息。這個語義保證了某個分組消費某個分區的消息,是同步而非並發的。如果一個topic只有一個partition,那么這個topic並發消費有序,否則只是單個partition有序。

  一般消息系統,consumer存在兩種消費模型:

   push:優勢在於消息實時性高。劣勢在於沒有考慮consumer消費能力和飽和情況,容易導致producer壓垮consumer。
   pull:優勢在可以控制消費速度和消費數量,保證consumer不會出現飽和。劣勢在於當沒有數據,會出現空輪詢,消耗cpu。

  kafka采用pull,並采用可配置化參數保證當存在數據並且數據量達到一定量的時候,consumer端才進行pull操作,否則一直處於block狀態。kakfa采用整數值consumer position來記錄單個分區的消費狀態,並且單個分區單個消息只能被consumer group內的一個consumer消費,維護簡單開銷小。消費完成,broker收到確認,position指向下次消費的offset。由於消息不會刪除,在完成消費,position更新之后,consumer依然可以重置offset重新消費歷史消息。

 

消息發送語義
  producer視角

     消息最多發送一次:producer異步發送消息,或者同步發消息但重試次數為0。
     消息至少發送一次:producer同步發送消息,失敗、超時都會重試。
     消息發且僅發一次:后續版本支持。
  consumer視角

     消息最多消費一次:consumer先讀取消息,再確認position,最后處理消息。
     消息至少消費一次:consumer先讀取消息,再處理消息,最后確認position。
     消息消費且僅消費一次。
  注意:

    如果消息處理后的輸出端(如db)能保證消息更新冪等性,則多次消費也能保證exactly once語義。
    如果輸出端能支持兩階段提交協議,則能保證確認position和處理輸出消息同時成功或者同時失敗。
    在消息處理的輸出端存儲更新后的position,保證了確認position和處理輸出消息的原子性(簡單、通用)。

 

可用性
      在kafka中,正常情況下所有node處於同步中狀態,當某個node處於非同步中狀態,也就意味着整個系統出問題,需要做容錯處理。

  同步中代表了:

    該node與zookeeper能連通。
    該node如果是follower,那么consumer position與leader不能差距太大(差額可配置)。
   某個分區內同步中的node組成一個集合,即該分區的ISR。

  kafka通過兩個手段容錯:

    數據備份:

     以partition為單位備份,副本數可設置。當副本數為N時,代表1個leader,N-1個followers,followers可以視為leader的consumer,拉取leader的消息,append到自己的系統中
    failover:
            1. 當leader處於非同步中時,系統從followers中選舉新leader

     2. 當某個follower狀態變為非同步中時,leader會將此follower剔除ISR,當此follower恢復並完成數據同步之后再次進入 ISR。

   另外,kafka有個保障:當producer生產消息時,只有當消息被所有ISR確認時,才表示該消息提交成功。只有提交成功的消息,才能被consumer消費。

   因此,當有N個副本時,N個副本都在ISR中,N-1個副本都出現異常時,系統依然能提供服務。

          假設N副本全掛了,node恢復后會面臨同步數據的過程,這期間ISR中沒有node,會導致該分區服務不可用。kafka采用一種降級措施來處理:選舉第一個恢復的node作為leader提供服務,以它的數據為基准,這個措施被稱為臟leader選舉。由於leader是主要提供服務的,kafka broker將多個partition的leader均分在不同的server上以均攤風險。每個parition都有leader,如果在每個partition內運行選主進程,那么會導致產生非常多選主進程。kakfa采用一種輕量級的方式:從broker集群中選出一個作為controller,這個controller監控掛掉的broker,為上面的分區批量選主。

 

一致性
  上面的方案保證了數據高可用,有時高可用是體現在對一致性的犧牲上。如果希望達到強一致性,可以采取如下措施:

     禁用臟leader選舉,ISR沒有node時,寧可不提供服務也不要未完全同步的node。
     設置最小ISR數量min_isr,保證消息至少要被min_isr個node確認才能提交。


持久化
  基於以下幾點事實,kafka重度依賴磁盤而非內存來存儲消息。

     硬盤便宜,內存貴
     順序讀+預讀取操作,能提高緩存命中率
     操作系統利用富余的內存作為pagecache,配合預讀取(read-ahead)+寫回(write-back)技術,從cache讀數據,寫到cache就返回(操作系統后台flush),提高用戶進程響應速度
     java對象實際大小比理想大小要大,使得將消息存到內存成本很高
     當堆內存占用不斷增加時,gc抖動較大
     基於文件順序讀寫的設計思路,代碼編寫簡單
     在持久化數據結構的選擇上,kafka采用了queue而不是Btree
     kafka只有簡單的根據offset讀和append操作,所以基於queue操作的時間復雜度為O(1),而基於Btree操作的時間復雜度為O(logN)
     在大量文件讀寫的時候,基於queue的read和append只需要一次磁盤尋址,而Btree則會涉及多次。磁盤尋址過程極大降低了讀寫性能
---------------------
作者:Saint-at-home
來源:CSDN
原文:https://blog.csdn.net/qq_29186199/article/details/80827085
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM