[paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019


MIL陷入局部最優,檢測到局部,無法完整的檢測到物體。將instance划分為空間相關和類別相關的子集。在這些子集中定義一系列平滑的損失近似代替原損失函數,優化這些平滑損失。

C-MIL learns instance subsets, where the instances are spatially related, i.e., overlapping with each other, and class related, i.e., having similar object class scores.

C-MIL treats images as bags and image regions generated by an object proposal method [24,32] as instances

待解決的問題:

1) How to optimize the non-convex function

2) How to perform instance selection in the early training stages when the instance selector is not well trained.

to be continue ...

 更完整的論文筆記[csdn]


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM