SparkSQL之UDF使用


package cn.piesat.test

import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ArrayBuffer


object SparkSQLTest {

def main(args: Array[String]): Unit = {
val spark=SparkSession.builder().appName("sparkSql").master("local[4]")
.config("spark.serializer","org.apache.spark.serializer.KryoSerializer").getOrCreate()
val sc=spark.sparkContext
val sqlContext=spark.sqlContext
val workerRDD=sc.textFile("F://Workers.txt").mapPartitions(itor=>{
val array=new ArrayBuffer[Worker]()
while(itor.hasNext){
val splited=itor.next().split(",")
array.append(new Worker(splited(0),splited(2).toInt,splited(2)))
}
array.toIterator
})
import spark.implicits._
//注冊UDF
spark.udf.register("strLen",(str:String,addr:String)=>str.length+addr.length)
val workDS=workerRDD.toDS()
workDS.createOrReplaceTempView("worker")
val resultDF=spark.sql("select strLen(name,addr) from worker")
val resultDS=resultDF.as("WO")
resultDS.show()

spark.stop()

}

}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM