1、下面直接上代碼需要注意的地方numba的官網找到
1)有一些坑自己去numba的官網找找看,下面是我的寫的一個加速的程序,希望對你有幫助。
#coding:utf-8
import time
from numba import jit, prange, vectorize
from numba import cuda
from numba import njit
import numpy as np
def adds(x,y,m):
return [x*i for i in range(y)]
@jit(parallel=True,nogil=True)
# @njit(parallel=True,nogil=True)
def adds1(x,y,m):
sd = np.empty((y))
for i in prange(y):
for j in range(m):
sd[i]=x*i*m
return sd
@jit(parallel=True,nogil=True)
def test(n):
temp = np.empty((50, 50)) # <--- allocation is hoisted as a loop invariant as `np.empty` is considered pure
for i in prange(n):
temp[:] = 0 # <--- this remains as assignment is a side effect
for j in range(50):
temp[j, j] = i
return temp
if __name__=="__main__":
n = 50
max = 10000**2*12
m=100
# st1 = time.time()
# val_1 = adds(n,max,m)
# print(time.time()-st1)
st2 = time.time()
val_2 = adds1(n,max,m)
print(time.time()-st2)
st3 = time.time()
tmp = test(100**3*10)
print(time.time()-st3)
2) 最后一個顯示時間輸入,

如果不調用jit裝飾器的話這兩個程序在我的電腦直接跑不下來。調用過后,Python可以做並行計算,開啟多線程,忽略gil動態鎖。
