什么是消息隊列
MQ全稱為Message Queue 消息隊列(MQ)是一種應用程序對應用程序的通信方法。MQ是消費-生產者模型的一個典型的代表,一端往消息隊列中不斷寫入消息,而另一端則可以讀取隊列中的消息。消息發布者只管把消息發布到 MQ 中而不用管誰來取,消息使用者只管從 MQ 中取消息而不管是誰發布的。這樣發布者和使用者都不用知道對方的存在。
你可以想想在生活中的一種場景:當你把信件的投進郵筒,郵遞員肯定最終會將信件送給收件人。我們可以把MQ比作 郵局和郵遞員。
MQ和郵局的主要區別是,它不處理消息,但是,它會接受數據、存儲消息數據、轉發消息
為什么使用消息隊列
其實就是問問你消息隊列都有哪些使用場景,然后你項目里具體是什么場景,說說你在這個場景里用消息隊列是什么?
如果有人問你這個問題,期望的一個回答是說,你們公司有個什么業務場景,這個業務場景有個什么技術挑戰,如果不用 MQ 可能會很麻煩,但是你現在用了 MQ 之后帶給了你很多的好處。
先說一下消息隊列常見的使用場景吧,其實場景有很多,但是比較核心的有 3 個:解耦、異步、削峰。
解耦
看這么個場景。A 系統發送數據到 BCD 三個系統,通過接口調用發送。如果 E 系統也要這個數據呢?那如果 C 系統現在不需要了呢?A 系統負責人幾乎崩潰......
在這個場景中,A 系統跟其它各種亂七八糟的系統嚴重耦合,A 系統產生一條比較關鍵的數據,很多系統都需要 A 系統將這個數據發送過來。A 系統要時時刻刻考慮 BCDE 四個系統如果掛了該咋辦?要不要重發,要不要把消息存起來?頭發都白了啊!
如果使用 MQ,A 系統產生一條數據,發送到 MQ 里面去,哪個系統需要數據自己去 MQ 里面消費。如果新系統需要數據,直接從 MQ 里消費即可;如果某個系統不需要這條數據了,就取消對 MQ 消息的消費即可。這樣下來,A 系統壓根兒不需要去考慮要給誰發送數據,不需要維護這個代碼,也不需要考慮人家是否調用成功、失敗超時等情況。
總結:通過一個 MQ,Pub/Sub 發布訂閱消息這么一個模型,A 系統就跟其它系統徹底解耦了。
你需要去考慮一下你負責的系統中是否有類似的場景,就是一個系統或者一個模塊,調用了多個系統或者模塊,互相之間的調用很復雜,維護起來很麻煩。但是其實這個調用是不需要直接同步調用接口的,如果用 MQ 給它異步化解耦,也是可以的,你就需要去考慮在你的項目里,是不是可以運用這個 MQ 去進行系統的解耦。
異步
一般互聯網類的企業,對於用戶直接的操作,一般要求是每個請求都必須在 200 ms 以內完成,對用戶幾乎是無感知的。
如果使用 MQ,那么 A 系統連續發送 3 條消息到 MQ 隊列中,假如耗時 5ms,A 系統從接受一個請求到返回響應給用戶,總時長是 3 + 5 = 8ms,對於用戶而言,其實感覺上就是點個按鈕,8ms 以后就直接返回了,爽!網站做得真好,真快!
削峰
每天 0:00 到 12:00,A 系統風平浪靜,每秒並發請求數量就 50 個。結果每次一到 12:00 ~ 13:00 ,每秒並發請求數量突然會暴增到 5k+ 條。但是系統是直接基於 MySQL 的,大量的請求涌入 MySQL,每秒鍾對 MySQL 執行約 5k 條 SQL。
一般的 MySQL,扛到每秒 2k 個請求就差不多了,如果每秒請求到 5k 的話,可能就直接把 MySQL 給打死了,導致系統崩潰,用戶也就沒法再使用系統了。
但是高峰期一過,到了下午的時候,就成了低峰期,可能也就 1w 的用戶同時在網站上操作,每秒中的請求數量可能也就 50 個請求,對整個系統幾乎沒有任何的壓力。
如果使用 MQ,每秒 5k 個請求寫入 MQ,A 系統每秒鍾最多處理 2k 個請求,因為 MySQL 每秒鍾最多處理 2k 個。A 系統從 MQ 中慢慢拉取請求,每秒鍾就拉取 2k 個請求,不要超過自己每秒能處理的最大請求數量就 ok,這樣下來,哪怕是高峰期的時候,A 系統也絕對不會掛掉。而 MQ 每秒鍾 5k 個請求進來,就 2k 個請求出去,結果就導致在中午高峰期(1 個小時),可能有幾十萬甚至幾百萬的請求積壓在 MQ 中。
這個短暫的高峰期積壓是 ok 的,因為高峰期過了之后,每秒鍾就 50 個請求進 MQ,但是 A 系統依然會按照每秒 2k 個請求的速度在處理。所以說,只要高峰期一過,A 系統就會快速將積壓的消息給解決掉。
消息隊列有什么優缺點
優點上面已經說了,就是在特殊場景下有其對應的好處,解耦、異步、削峰。
缺點有以下幾個:
-
系統可用性降低 系統引入的外部依賴越多,越容易掛掉。本來你就是 A 系統調用 BCD 三個系統的接口就好了,人 ABCD 四個系統好好的,沒啥問題,你偏加個 MQ 進來,萬一 MQ 掛了咋整,MQ 一掛,整套系統崩潰的,你不就完了?如何保證消息隊列的高可用,可以點擊這里查看。
-
系統復雜度提高 硬生生加個 MQ 進來,你怎么保證消息沒有重復消費?怎么處理消息丟失的情況?怎么保證消息傳遞的順序性?頭大頭大,問題一大堆,痛苦不已。
-
一致性問題 A 系統處理完了直接返回成功了,人都以為你這個請求就成功了;但是問題是,要是 BCD 三個系統那里,BD 兩個系統寫庫成功了,結果 C 系統寫庫失敗了,咋整?你這數據就不一致了。
- 如何保障數據不丟失(可以從下面三個方式去考慮)
1. 在隊列里,設置durable=true 代表隊列持久化 2. 在生產者端,設置 properties = pika.BasicProperties( delivery_mode=2, # make message persistent ) 3. 在消費者端 auto_ack = False ch.basic_ack(delivery_tag=method.delivery_tag)
所以消息隊列實際是一種非常復雜的架構,你引入它有很多好處,但是也得針對它帶來的壞處做各種額外的技術方案和架構來規避掉,做好之后,你會發現,媽呀,系統復雜度提升了一個數量級,也許是復雜了 10 倍。但是關鍵時刻,用,還是得用的。
Kafka、ActiveMQ、RabbitMQ、RocketMQ 有什么優缺點?
一般的業務系統要引入 MQ,最早大家都用 ActiveMQ,但是現在確實大家用的不多了,沒經過大規模吞吐量場景的驗證,社區也不是很活躍,所以大家還是算了吧,我個人不推薦用這個了;綜上,各種對比之后,有如下建議:
后來大家開始用 RabbitMQ,但是確實 erlang 語言阻止了大量的 Java 工程師去深入研究和掌控它,對公司而言,幾乎處於不可控的狀態,但是確實人家是開源的,比較穩定的支持,活躍度也高;
不過現在確實越來越多的公司會去用 RocketMQ,確實很不錯,畢竟是阿里出品,但社區可能有突然黃掉的風險(目前 RocketMQ 已捐給 Apache,但 GitHub 上的活躍度其實不算高)對自己公司技術實力有絕對自信的,推薦用 RocketMQ,否則回去老老實實用 RabbitMQ 吧,人家有活躍的開源社區,絕對不會黃。
所以中小型公司,技術實力較為一般,技術挑戰不是特別高,用 RabbitMQ 是不錯的選擇;大型公司,基礎架構研發實力較強,用 RocketMQ 是很好的選擇。
如果是大數據領域的實時計算、日志采集等場景,用 Kafka 是業內標准的,絕對沒問題,社區活躍度很高,絕對不會黃,何況幾乎是全世界這個領域的事實性規范。