保存神經網絡或只保存神經網絡參數


1.保存神經網絡

  速度較慢

2.只保存神經網絡參數

  速度快,這種方式將會提取所有的參數, 然后再放到你的新建網絡中

代碼:

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F     # 激勵函數都在這

torch.manual_seed(1)    # reproducible

# 假數據 用了torch.manual_seed(1)所以假數據是固定不變的
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
def save():
    #構建神經網絡
    net1=torch.nn.Sequential(
        torch.nn.Linear(1,10),
        torch.nn.ReLU(),
        torch.nn.Linear(10,1)
    )
    #訓練
    optimizer = torch.optim.SGD(net1.parameters(),lr=0.5)
    loss_func=torch.nn.MSELoss()
    for t in range(100):
        prediction=net1(x)
        loss=loss_func(prediction,y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    #保存
    torch.save(net1, 'net.pkl')#整個網絡
    torch.save(net1.state_dict(),'net_params.pkl')#網絡的參數
def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pkl')
    prediction = net2(x)
def restore_params():
    # 新建 net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )

    # 將保存的參數復制到 net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)
save()
restore_net()
restore_params()

輸出圖:

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM