一、數據准備
現准備原始json數據(test.json)如下:
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"} {"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"} {"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"} {"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"} {"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"} {"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"} {"movie":"1287","rate":"5","timeStamp":"978302039","uid":"1"} {"movie":"2804","rate":"5","timeStamp":"978300719","uid":"1"} {"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"}
現在將數據導入到hive中,並且最終想要得到這么一個結果:
可以使用:內置函數(get_json_object)或者自定義函數完成
二、get_json_object(string json_string, string path)
返回值:String
說明:解析json的字符串json_string,返回path指定的內容。如果輸入的json字符串無效,那么返回NUll,這個函數每次只能返回一個數據項。
0: jdbc:hive2://hadoop3:10000> select get_json_object('{"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"}','$.movie');
1、創建json表並將數據導入
0: jdbc:hive2://master:10000> create table json(data string); No rows affected (0.572 seconds)
0: jdbc:hive2://master:10000> load data local inpath '/home/hadoop/json.txt' into table json;
No rows affected (1.046 seconds)
0: jdbc:hive2://master:10000> select get_json_object(data,'$.movie') as movie from json;
三、json_tuple(jsonStr, k1, k2, ...)
參數為一組鍵k1,k2,。。。。。和json字符串,返回值的元組。該方法比get_json_object高效,因此可以在一次調用中輸入多次鍵
0: jdbc:hive2://master:10000> select b.b_movie,b.b_rate,b.b_timeStamp,b.b_uid from json a lateral view
json_tuple(a.data,'movie','rate','timeStamp','uid') b as b_movie,b_rate,b_timeStamp,b_uid;
注意點:
json_tuple相當於get_json_object的優勢就是一次可以解析多個Json字段。但是如果我們有個Json數組,這兩個函數都無法處理
四、Json數組解析
1、使用Hive自帶的函數解析Json數組
Hive的內置的explode函數,explode()函數接收一個 array或者map 類型的數據作為輸入,然后將 array 或 map 里面的元素按照每行的形式輸出。其可以配合 LATERAL VIEW 一起使用。
hive> select explode(array('A','B','C')); OK A B C Time taken: 4.879 seconds, Fetched: 3 row(s) hive> select explode(map('A',10,'B',20,'C',30)); OK A 10 B 20 C 30 Time taken: 0.261 seconds, Fetched: 3 row(s)
這個explode函數和我們解析json數據是有關系的,我們可以使用explode函數將json數組里面的元素按照一行一行的形式輸出:
hive> SELECT explode(split(regexp_replace(regexp_replace('[{"website":"www.baidu.com","name":"百度"},{"website":"google.com","name":"谷歌"}]', '\\]',''),'\\}\\,\\{','\\}\\;\\{'),'\\;')); OK {"website":"www.baidu.com","name":"百度"} {"website":"google.com","name":"谷歌"} Time taken: 0.14 seconds, Fetched: 2 row(s)
說明:
SELECT explode(split( regexp_replace( regexp_replace( '[ {"website":"www.baidu.com","name":"百度"}, {"website":"google.com","name":"谷歌"} ]', '\\[|\\]',''), --將 Json 數組兩邊的中括號去掉 '\\}\\,\\{' --將 Json 數組元素之間的逗號換成分號 ,'\\}\\;\\{'), '\\;')); --以分號作為分隔符
結合 get_json_object 或 json_tuple 來解析里面的字段:
hive> select json_tuple(json, 'website', 'name') from (SELECT explode(split(regexp_replace(regexp_replace('[{"website":"www.baidu.com","name":"百},{"website":"google.com","name":"谷歌"}]', '\\[|\\]',''),'\\}\\,\\{','\\}\\;\\{'),'\\;')) as json) test; OK www.baidu.com 百度 google.com 谷歌 Time taken: 0.283 seconds, Fetched: 2 row(s)
2、自定義函數解析JSON數組
雖然可以使用Hive自帶的函數類解析Json數組,但是使用起來有些麻煩。Hive提供了強大的自定義函數(UDF)的接口,我們可以使用這個功能來編寫解析JSON數組的UDF。具體測試過程如下:
<dependencies> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>2.1.1</version> </dependency> </dependencies>
import org.apache.hadoop.hive.ql.exec.Description; import org.apache.hadoop.hive.ql.exec.UDF; import org.json.JSONArray; import org.json.JSONException; import java.util.ArrayList; @Description(name = "json_array", value = "_FUNC_(array_string) - Convert a string of a JSON-encoded array to a Hive array of strings.") public class JsonArray extends UDF{ public ArrayList<String> evaluate(String jsonString) { if (jsonString == null) { return null; } try { JSONArray extractObject = new JSONArray(jsonString); ArrayList<String> result = new ArrayList<String>(); for (int ii = 0; ii < extractObject.length(); ++ii) { result.add(extractObject.get(ii).toString()); } return result; } catch (JSONException e) { return null; } catch (NumberFormatException e) { return null; } } }
將上面的代碼進行編譯打包,jar包名為:HiveJsonTest-1.0-SNAPSHOT.jar
hive> add jar /mnt/HiveJsonTest-1.0-SNAPSHOT.jar; Added [/mnt/HiveJsonTest-1.0-SNAPSHOT.jar] to class path Added resources: [/mnt/HiveJsonTest-1.0-SNAPSHOT.jar]
hive> create temporary function json_array as 'JsonArray'; OK Time taken: 0.111 seconds
hive> select explode(json_array('[{"website":"www.baidu.com","name":"百度"},{"website":"google.com"name":"谷歌"}]')); OK {"website":"www.baidu.com","name":"百度"} {"website":"google.com","name":"谷歌"} Time taken: 10.427 seconds, Fetched: 2 row(s)
hive> select json_tuple(json, 'website', 'name') from (SELECT explode(json_array('[{"website":"www.baidu.com","name":"百度"},{"website":"google.com","name":"谷歌"}]')) as json) test; OK www.baidu.com 百度 google.com 谷歌 Time taken: 0.265 seconds, Fetched: 2 row(s)
3、自定義函數解析json對象
package com.laotou; import org.apache.commons.lang3.StringUtils; import org.apache.hadoop.hive.ql.exec.UDF; import org.json.JSONException; import org.json.JSONObject; import org.json.JSONTokener; /** * * add jar jar/bdp_udf_demo-1.0.0.jar; * create temporary function getJsonObject as 'com.laotou.JsonObjectParsing'; * Json對象解析UDF * @Author: * @Date: 2019/8/9 */ public class JsonObjectParsing extends UDF { public static String evaluate(String jsonStr, String keyName) throws JSONException { if(StringUtils.isBlank(jsonStr) || StringUtils.isBlank(keyName)){ return null; } JSONObject jsonObject = new JSONObject(new JSONTokener(jsonStr)); Object objValue = jsonObject.get(keyName); if(objValue==null){ return null; } return objValue.toString(); } }
3、1准備數據
3、2測試