線程池,進程池
python的多線程並不是完全雞肋的存在,得分情況來看。在IO密集型任務下,能提高多倍效率。在CPU密集型任務下,使用多進程也能規避GIL鎖。
python3標准庫concurrent.futures
比原Thread封裝更高,多線程concurrent.futures.ThreadPoolExecutor
,多進程concurrent.futures.ProcessPoolExecutor
利用concurrent.futures.Future
來進行各種便捷的數據交互,包括處理異常,都在result()中再次拋出。
模板
import time
from concurrent import futures
from concurrent.futures import ThreadPoolExecutor
def display(args):
print(time.strftime('[%H:%M:%S]', time.localtime()), end=' ')
print(args)
def task(n):
"""只是休眠"""
display('begin sleep {}s.'.format(n))
time.sleep(n)
display('ended sleep {}s.'.format(n))
def do_many_task_inorder():
"""多線程
按任務發布順序依次等待完成
"""
tasks = [5, 4, 3, 2, 1]
with ThreadPoolExecutor(max_workers=3) as executor:
future_list = [executor.submit(task, arg) for arg in tasks]
display('非阻塞運行')
for future in future_list:
display(future)
display('統一結束(有序)')
for future in future_list:
display(future.result())
def do_many_task_disorder():
"""多線程執行
先完成先顯示
"""
tasks = [5, 4, 3, 2, 1]
with ThreadPoolExecutor(max_workers=3) as executor:
future_list = [executor.submit(task, arg) for arg in tasks]
display('非阻塞運行')
for future in future_list:
display(future)
display('統一結束(無序)')
done_iter = futures.as_completed(future_list) # generator
for done in done_iter:
display(done)
if __name__ == '__main__':
do_many_task_inorder()
do_many_task_disorder()