【轉載自 https://blog.csdn.net/qq1483661204/article/details/79039702】
Learning a Similarity Metric Discriminatively, with Application to Face
Verification 這個siamese文章鏈接。
本文主要講解siamese網絡,並用tensorflwo實現,在mnist數據集中,siamese網絡和其他網絡的不同之處在於,首先他是兩個輸入,它輸入的不是標簽,而是是否是同一類別,如果是同一類別就是0,否則就是1,文章中是用這個網絡來做人臉識別,網絡結構圖如下:
從圖中可以看到,他又兩個輸入,分別是下x1和x2,左右兩個的網咯結構是一樣的,並且他們共享權重,最后得到兩個輸出,分別是Gw(x1)和Gw(x2),這個網絡的很好理解,當輸入是同一張圖片的時候,我們希望他們呢之間的歐式距離很小,當不是一張圖片時,我們的歐式距離很大。有了網路結構,接下來就是定義損失函數,這個很重要,而經過我們的分析,我們可以知道,損失函數的特點應該是這樣的,
(1) 當我們輸入同一張圖片時,他們之間的歐式距離越小,損失是越小的,距離越大,損失越大
(2) 當我們的輸入是不同的圖片的時候,他們之間的距離越大,損失越大
怎么理解呢,很簡單,我們就是最小化把相同類的數據之間距離,最大化不同類之間的距離。
然后文章中定義的損失函數如下:
首先是定義距離,使用l2范數,公式如下:
距離其實就是歐式距離,有了距離,我們的損失函數和距離的關系我上面說了,如何包證滿足上面的要求呢,文章提出這樣的損失函數:
其中我們的Ew就是距離,Lg和L1相當於是一個系數,這個損失函數和交叉熵其實挺像,為了讓損失函數滿足上面的關系,讓Lg滿足單調遞減,LI滿足單調遞增就可以。另外一個條件是:同類圖片之間的距離必須比不同類之間的距離小,
其他條件如下:
然后作者也給出了證明,最終損失函數為:
Q是一個常數,這個損失函數就滿足上面的關系,然后我用tensoflow寫了一個損失函數如下:
需要強調的是,這個地方同一類圖片是0,不同類圖片是1,然后我自己用tensorflow實現的這個損失函數如下:
def siamese_loss(out1,out2,y,Q=5): Q = tf.constant(Q, name="Q",dtype=tf.float32) E_w = tf.sqrt(tf.reduce_sum(tf.square(out1-out2),1)) pos = tf.multiply(tf.multiply(y,2/Q),tf.square(E_w)) neg = tf.multiply(tf.multiply(1-y,2*Q),tf.exp(-2.77/Q*E_w)) loss = pos + neg loss = tf.reduce_mean(loss) return loss
這就是損失函數,其他的代碼如下:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np tf.reset_default_graph() mnist = input_data.read_data_sets('./data/mnist',one_hot=True) print(mnist.validation.num_examples) print(mnist.train.num_examples) print(mnist.test.num_examples) def siamese_loss(out1,out2,y,Q=5): Q = tf.constant(Q, name="Q",dtype=tf.float32) E_w = tf.sqrt(tf.reduce_sum(tf.square(out1-out2),1)) pos = tf.multiply(tf.multiply(y,2/Q),tf.square(E_w)) neg = tf.multiply(tf.multiply(1-y,2*Q),tf.exp(-2.77/Q*E_w)) loss = pos + neg loss = tf.reduce_mean(loss) return loss def siamese(inputs,keep_prob): with tf.name_scope('conv1') as scope: w1 = tf.Variable(tf.truncated_normal(shape=[3,3,1,32],stddev=0.05),name='w1') b1 = tf.Variable(tf.zeros(32),name='b1') conv1 = tf.nn.conv2d(inputs,w1,strides=[1,1,1,1],padding='SAME',name='conv1') with tf.name_scope('relu1') as scope: relu1 = tf.nn.relu(tf.add(conv1,b1),name='relu1') with tf.name_scope('conv2') as scope: w2 = tf.Variable(tf.truncated_normal(shape=[3,3,32,64],stddev=0.05),name='w2') b2 = tf.Variable(tf.zeros(64),name='b2') conv2 = tf.nn.conv2d(relu1,w2,strides=[1,2,2,1],padding='SAME',name='conv2') with tf.name_scope('relu2') as scope: relu2 = tf.nn.relu(conv2+b2,name='relu2') with tf.name_scope('conv3') as scope: w3 = tf.Variable(tf.truncated_normal(shape=[3,3,64,128],mean=0,stddev=0.05),name='w3') b3 = tf.Variable(tf.zeros(128),name='b3') conv3 = tf.nn.conv2d(relu2,w3,strides=[1,2,2,1],padding='SAME') with tf.name_scope('relu3') as scope: relu3 = tf.nn.relu(conv3+b3,name='relu3') with tf.name_scope('fc1') as scope: x_flat = tf.reshape(relu3,shape=[-1,7*7*128]) w_fc1=tf.Variable(tf.truncated_normal(shape=[7*7*128,1024],stddev=0.05,mean=0),name='w_fc1') b_fc1 = tf.Variable(tf.zeros(1024),name='b_fc1') fc1 = tf.add(tf.matmul(x_flat,w_fc1),b_fc1) with tf.name_scope('relu_fc1') as scope: relu_fc1 = tf.nn.relu(fc1,name='relu_fc1') with tf.name_scope('drop_1') as scope: drop_1 = tf.nn.dropout(relu_fc1,keep_prob=keep_prob,name='drop_1') with tf.name_scope('bn_fc1') as scope: bn_fc1 = tf.layers.batch_normalization(drop_1,name='bn_fc1') with tf.name_scope('fc2') as scope: w_fc2 = tf.Variable(tf.truncated_normal(shape=[1024,512],stddev=0.05,mean=0),name='w_fc2') b_fc2 = tf.Variable(tf.zeros(512),name='b_fc2') fc2 = tf.add(tf.matmul(bn_fc1,w_fc2),b_fc2) with tf.name_scope('relu_fc2') as scope: relu_fc2 = tf.nn.relu(fc2,name='relu_fc2') with tf.name_scope('drop_2') as scope: drop_2 = tf.nn.dropout(relu_fc2,keep_prob=keep_prob,name='drop_2') with tf.name_scope('bn_fc2') as scope: bn_fc2 = tf.layers.batch_normalization(drop_2,name='bn_fc2') with tf.name_scope('fc3') as scope: w_fc3 = tf.Variable(tf.truncated_normal(shape=[512,2],stddev=0.05,mean=0),name='w_fc3') b_fc3 = tf.Variable(tf.zeros(2),name='b_fc3') fc3 = tf.add(tf.matmul(bn_fc2,w_fc3),b_fc3) return fc3 lr = 0.01 iterations = 20000 batch_size = 64 with tf.variable_scope('input_x1') as scope: x1 = tf.placeholder(tf.float32, shape=[None, 784]) x_input_1 = tf.reshape(x1, [-1, 28, 28, 1]) with tf.variable_scope('input_x2') as scope: x2 = tf.placeholder(tf.float32, shape=[None, 784]) x_input_2 = tf.reshape(x2, [-1, 28, 28, 1]) with tf.variable_scope('y') as scope: y = tf.placeholder(tf.float32, shape=[batch_size]) with tf.name_scope('keep_prob') as scope: keep_prob = tf.placeholder(tf.float32) with tf.variable_scope('siamese') as scope: out1 = siamese(x_input_1,keep_prob) scope.reuse_variables() out2 = siamese(x_input_2,keep_prob) with tf.variable_scope('metrics') as scope: loss = siamese_loss(out1, out2, y) optimizer = tf.train.AdamOptimizer(lr).minimize(loss) loss_summary = tf.summary.scalar('loss',loss) merged_summary = tf.summary.merge_all() with tf.Session() as sess: writer = tf.summary.FileWriter('./graph/siamese',sess.graph) sess.run(tf.global_variables_initializer()) for itera in range(iterations): xs_1, ys_1 = mnist.train.next_batch(batch_size) ys_1 = np.argmax(ys_1,axis=1) xs_2, ys_2 = mnist.train.next_batch(batch_size) ys_2 = np.argmax(ys_2,axis=1) y_s = np.array(ys_1==ys_2,dtype=np.float32) _,train_loss,summ = sess.run([optimizer,loss,merged_summary],feed_dict={x1:xs_1,x2:xs_2,y:y_s,keep_prob:0.6}) writer.add_summary(summ,itera) if itera % 1000 == 1 : print('iter {},train loss {}'.format(itera,train_loss)) embed = sess.run(out1,feed_dict={x1:mnist.test.images,keep_prob:0.6}) test_img = mnist.test.images.reshape([-1,28,28,1]) writer.close()
這里多說一句,siamese可以用來降維,因為最后他的輸出是二維的,這樣直接把維度降下來了。
Learning a Similarity Metric Discriminatively, with Application to Face Verification 這個siamese文章鏈接。 本文主要講解siamese網絡,並用tensorflwo實現,在mnist數據集中,siamese網絡和其他網絡的不同之處在於,首先他是兩個輸入,它輸入的不是標簽,而是是否是同一類別,如果是同一類別就是0,否則就是1,文章中是用這個網絡來做人臉識別,網絡結構圖如下: 從圖中可以看到,他又兩個輸入,分別是下x1和x2,左右兩個的網咯結構是一樣的,並且他們共享權重,最后得到兩個輸出,分別是Gw(x1)和Gw(x2),這個網絡的很好理解,當輸入是同一張圖片的時候,我們希望他們呢之間的歐式距離很小,當不是一張圖片時,我們的歐式距離很大。有了網路結構,接下來就是定義損失函數,這個很重要,而經過我們的分析,我們可以知道,損失函數的特點應該是這樣的, (1) 當我們輸入同一張圖片時,他們之間的歐式距離越小,損失是越小的,距離越大,損失越大 (2) 當我們的輸入是不同的圖片的時候,他們之間的距離越大,損失越大 怎么理解呢,很簡單,我們就是最小化把相同類的數據之間距離,最大化不同類之間的距離。 然后文章中定義的損失函數如下: 首先是定義距離,使用l2范數,公式如下: 距離其實就是歐式距離,有了距離,我們的損失函數和距離的關系我上面說了,如何包證滿足上面的要求呢,文章提出這樣的損失函數: 其中我們的Ew就是距離,Lg和L1相當於是一個系數,這個損失函數和交叉熵其實挺像,為了讓損失函數滿足上面的關系,讓Lg滿足單調遞減,LI滿足單調遞增就可以。另外一個條件是:同類圖片之間的距離必須比不同類之間的距離小, 其他條件如下: 然后作者也給出了證明,最終損失函數為: Q是一個常數,這個損失函數就滿足上面的關系,然后我用tensoflow寫了一個損失函數如下: 需要強調的是,這個地方同一類圖片是0,不同類圖片是1,然后我自己用tensorflow實現的這個損失函數如下:
def siamese_loss(out1,out2,y,Q=5):
Q = tf.constant(Q, name="Q",dtype=tf.float32) E_w = tf.sqrt(tf.reduce_sum(tf.square(out1-out2),1)) pos = tf.multiply(tf.multiply(y,2/Q),tf.square(E_w)) neg = tf.multiply(tf.multiply(1-y,2*Q),tf.exp(-2.77/Q*E_w)) loss = pos + neg loss = tf.reduce_mean(loss) return loss123456789這就是損失函數,其他的代碼如下:
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport numpy as nptf.reset_default_graph()mnist = input_data.read_data_sets('./data/mnist',one_hot=True)print(mnist.validation.num_examples)print(mnist.train.num_examples)print(mnist.test.num_examples)def siamese_loss(out1,out2,y,Q=5):
Q = tf.constant(Q, name="Q",dtype=tf.float32) E_w = tf.sqrt(tf.reduce_sum(tf.square(out1-out2),1)) pos = tf.multiply(tf.multiply(y,2/Q),tf.square(E_w)) neg = tf.multiply(tf.multiply(1-y,2*Q),tf.exp(-2.77/Q*E_w)) loss = pos + neg loss = tf.reduce_mean(loss) return loss
def siamese(inputs,keep_prob): with tf.name_scope('conv1') as scope: w1 = tf.Variable(tf.truncated_normal(shape=[3,3,1,32],stddev=0.05),name='w1') b1 = tf.Variable(tf.zeros(32),name='b1') conv1 = tf.nn.conv2d(inputs,w1,strides=[1,1,1,1],padding='SAME',name='conv1') with tf.name_scope('relu1') as scope: relu1 = tf.nn.relu(tf.add(conv1,b1),name='relu1') with tf.name_scope('conv2') as scope: w2 = tf.Variable(tf.truncated_normal(shape=[3,3,32,64],stddev=0.05),name='w2') b2 = tf.Variable(tf.zeros(64),name='b2') conv2 = tf.nn.conv2d(relu1,w2,strides=[1,2,2,1],padding='SAME',name='conv2') with tf.name_scope('relu2') as scope: relu2 = tf.nn.relu(conv2+b2,name='relu2')
with tf.name_scope('conv3') as scope:
w3 = tf.Variable(tf.truncated_normal(shape=[3,3,64,128],mean=0,stddev=0.05),name='w3') b3 = tf.Variable(tf.zeros(128),name='b3') conv3 = tf.nn.conv2d(relu2,w3,strides=[1,2,2,1],padding='SAME') with tf.name_scope('relu3') as scope: relu3 = tf.nn.relu(conv3+b3,name='relu3')
with tf.name_scope('fc1') as scope: x_flat = tf.reshape(relu3,shape=[-1,7*7*128]) w_fc1=tf.Variable(tf.truncated_normal(shape=[7*7*128,1024],stddev=0.05,mean=0),name='w_fc1') b_fc1 = tf.Variable(tf.zeros(1024),name='b_fc1') fc1 = tf.add(tf.matmul(x_flat,w_fc1),b_fc1) with tf.name_scope('relu_fc1') as scope: relu_fc1 = tf.nn.relu(fc1,name='relu_fc1')
with tf.name_scope('drop_1') as scope:
drop_1 = tf.nn.dropout(relu_fc1,keep_prob=keep_prob,name='drop_1') with tf.name_scope('bn_fc1') as scope: bn_fc1 = tf.layers.batch_normalization(drop_1,name='bn_fc1') with tf.name_scope('fc2') as scope: w_fc2 = tf.Variable(tf.truncated_normal(shape=[1024,512],stddev=0.05,mean=0),name='w_fc2') b_fc2 = tf.Variable(tf.zeros(512),name='b_fc2') fc2 = tf.add(tf.matmul(bn_fc1,w_fc2),b_fc2) with tf.name_scope('relu_fc2') as scope: relu_fc2 = tf.nn.relu(fc2,name='relu_fc2') with tf.name_scope('drop_2') as scope: drop_2 = tf.nn.dropout(relu_fc2,keep_prob=keep_prob,name='drop_2') with tf.name_scope('bn_fc2') as scope: bn_fc2 = tf.layers.batch_normalization(drop_2,name='bn_fc2') with tf.name_scope('fc3') as scope: w_fc3 = tf.Variable(tf.truncated_normal(shape=[512,2],stddev=0.05,mean=0),name='w_fc3') b_fc3 = tf.Variable(tf.zeros(2),name='b_fc3') fc3 = tf.add(tf.matmul(bn_fc2,w_fc3),b_fc3) return fc3
lr = 0.01iterations = 20000batch_size = 64
with tf.variable_scope('input_x1') as scope: x1 = tf.placeholder(tf.float32, shape=[None, 784]) x_input_1 = tf.reshape(x1, [-1, 28, 28, 1])with tf.variable_scope('input_x2') as scope: x2 = tf.placeholder(tf.float32, shape=[None, 784]) x_input_2 = tf.reshape(x2, [-1, 28, 28, 1])with tf.variable_scope('y') as scope: y = tf.placeholder(tf.float32, shape=[batch_size])
with tf.name_scope('keep_prob') as scope: keep_prob = tf.placeholder(tf.float32)
with tf.variable_scope('siamese') as scope: out1 = siamese(x_input_1,keep_prob) scope.reuse_variables() out2 = siamese(x_input_2,keep_prob)with tf.variable_scope('metrics') as scope: loss = siamese_loss(out1, out2, y) optimizer = tf.train.AdamOptimizer(lr).minimize(loss)
loss_summary = tf.summary.scalar('loss',loss)merged_summary = tf.summary.merge_all()
with tf.Session() as sess:
writer = tf.summary.FileWriter('./graph/siamese',sess.graph) sess.run(tf.global_variables_initializer())
for itera in range(iterations): xs_1, ys_1 = mnist.train.next_batch(batch_size) ys_1 = np.argmax(ys_1,axis=1) xs_2, ys_2 = mnist.train.next_batch(batch_size) ys_2 = np.argmax(ys_2,axis=1) y_s = np.array(ys_1==ys_2,dtype=np.float32) _,train_loss,summ = sess.run([optimizer,loss,merged_summary],feed_dict={x1:xs_1,x2:xs_2,y:y_s,keep_prob:0.6})
writer.add_summary(summ,itera) if itera % 1000 == 1 : print('iter {},train loss {}'.format(itera,train_loss)) embed = sess.run(out1,feed_dict={x1:mnist.test.images,keep_prob:0.6}) test_img = mnist.test.images.reshape([-1,28,28,1]) writer.close()123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117這里多說一句,siamese可以用來降維,因為最后他的輸出是二維的,這樣直接把維度降下來了。--------------------- 作者:ML_BOY 來源:CSDN 原文:https://blog.csdn.net/qq1483661204/article/details/79039702 版權聲明:本文為博主原創文章,轉載請附上博文鏈接!