1、復現VGG訓練自定義圖像分類,成功了哈哈。
需要代碼工程可聯系博主qq號,在左邊連接可找到。
核心代碼:
# coding:utf-8 import tensorflow as tf import os from load_vgg19_model import net os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def VGG19_image_classifier(X,Y,nn_classes): vgg19_path = "./vgg19_model/imagenet-vgg-verydeep-19.mat" net_list,mean_pixel,all_layers = net(vgg19_path,X) vgg19_pool5 = net_list[-1]["pool5"] vgg19_pool5_shape = vgg19_pool5.get_shape().as_list() vgg19_pool5_number = vgg19_pool5_shape[1]*vgg19_pool5_shape[2]*vgg19_pool5_shape[3] weights = { 'wd1': tf.Variable(tf.random_normal([vgg19_pool5_number, 4096])), 'wd2': tf.Variable(tf.random_normal([4096, 4096])), 'out': tf.Variable(tf.random_normal([4096, nn_classes])) } biases = { 'bd1': tf.Variable(tf.zeros([4096])), 'bd2': tf.Variable(tf.zeros([4096])), 'out': tf.Variable(tf.zeros([nn_classes])) } # 全連接一層 _densel = tf.reshape(vgg19_pool5, [-1, vgg19_pool5_number]) fc6 = tf.add(tf.matmul(_densel,weights["wd1"]),biases["bd1"]) relu6 = tf.nn.relu(fc6) # 全連接二層 fc7 = tf.add(tf.matmul(relu6,weights["wd2"]),biases["bd2"]) relu7 = tf.nn.relu(fc7) # 輸出層 fc8 = tf.add(tf.matmul(relu7,weights["out"]),biases["out"]) # out = tf.nn.softmax(fc8) out = fc8 # 損失函數 loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=out)) # 計算交叉熵 # 優化目標 optimizing optimizing = tf.train.AdamOptimizer(0.0001).minimize(loss) # 使用adam優化器來以0.0001的學習率來進行微調 # 精確度 accuracy correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(out, 1)) # 判斷預測標簽和實際標簽是否匹配 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 想要保存的模型參數,方便加載找到。 tf.add_to_collection("loss", loss) tf.add_to_collection("out", out) tf.add_to_collection("accuracy", accuracy) tf.add_to_collection("optimizing", optimizing) return { "loss": loss, "optimizing": optimizing, "accuracy": accuracy, "out": out, "mean_pixel":mean_pixel }
小批量梯度訓練方法如下圖,才訓練1次達到88%。