LC濾波器具有結構簡單、設備投資少、運行可靠性較高、運行費用較低等優點,應用很廣泛。 LC濾波器又分為單調諧濾波器、高通濾波器、雙調諧濾波器及三調諧濾波器等幾種。
LC濾波主要是電感的電阻小,直流損耗小。對交流電的感抗大,濾波效果好。缺點是體積大,笨重。成本高。用在要求高的電源電路中。 RC濾波中的電阻要消耗一部分直流電壓,R不能取得很大,用在電流小要求不高的電路中.RC體積小,成本低。濾波效果不如LC電路
常用的濾波電路有無源濾波和有源濾波兩大類。若濾波電路元件僅由無源元件(電阻、電容、電感)組成,則稱為無源濾波電路。無源濾波的主要形式有電容濾波、電感濾波和復式濾波(包括倒L型、LC濾波、LCπ型濾波和RCπ型濾波等)。若濾波電路不僅由無源元件,還由有源元件(雙極型管、單極型管、集成運放)組成,則稱為有源濾波電路。有源濾波的主要形式是有源RC濾波,也被稱作電子濾波器。
無源濾波電路的結構簡單,易於設計,但它的通帶放大倍數及其截止頻率都隨負載而變化,因而不適用於信號處理要求高的場合。無源濾波電路通常用在功率電路中,比如直流電源整流后的濾波,或者大電流負載時采用LC(電感、電容)電路濾波。
有源濾波電路的負載不影響濾波特性,因此常用於信號處理要求高的場合。有源濾波電路一般由RC網絡和集成運放組成,因而必須在合適的直流電源供電的情況下才能使用,同時還可以進行放大。但電路的組成和設計也較復雜。有源濾波電路不適用於高電壓大電流的場合,只適用於信號處理。 根據濾波器的特點可知,它的電壓放大倍數的幅頻特性可以准確地描述該電路屬於低通、高通、帶通還是帶阻濾波器,因而如果能定性分析出通帶和阻帶在哪一個頻段,就可以確定濾波器的類型。 識別濾波器的方法是:若信號頻率趨於零時有確定的電壓放大倍數,且信號頻率趨於無窮大時電壓放大倍數趨於零,則為低通濾波器;反之,若信號頻率趨於無窮大時有確定的電壓放大倍數,且信號頻率趨於零時電壓放大倍數趨於零,則為高通濾波器;若信號頻率趨於零和無窮大時電壓放大倍數均趨於零,則為帶通濾波器;反之,若信號頻率趨於零和無窮大時電壓放大倍數具有相同的確定值,且在某一頻率范圍內電壓放大倍數趨於零,則為帶阻濾波器。
LC濾波電路的組成:
LC濾波器一般是由濾波電抗器、電容器和電阻器適當組合而成,與諧波源並聯,除起濾波作用外,還兼顧無功補償的需要;
LC濾波電路的原理:
LC濾波器也稱為無源濾波器,是傳統的諧波補償裝置。LC濾波器之所以稱為無源濾波器,顧名思義,就是該裝置不需要額外提供電源。LC濾波器一般是由濾波電容器、電抗器和電阻器適當組合而成,與諧波源並聯,除起濾波作用外,還兼顧無功補償的需要; LC濾波器按照功能分為LC低通濾波器、LC帶通濾波器、高通濾波器、LC全通濾波器、LC帶阻濾波器; 按調諧又分為單調諧濾波器、雙調諧濾波器及三調諧濾波器等幾種。 LC濾波器設計流程主要考慮其諧振頻率及電容器耐壓,電抗器耐流。
在電子線路中,電感線圈對交流有限流作用,由電感的感抗公式XL=2πfL 可知,電感L越大,頻率f越高,感抗就越大。因此電感線圈有通低頻,阻高頻的作用,這就是電感的濾波原理 下面是LC濾波電路實例 電感在電路最常見的作用就是與電容一起,組成LC濾波電路。我們已經知道,電容具有“阻直流,通交流”的本領,而電感則有“通直流,阻交流,通低頻,阻高頻”的功能。如果把伴有許多干擾信號的直流電通過LC濾波電路(如圖),那么,交流干擾信號大部分將被電感阻止吸收變成磁感和熱能,剩下的大部分被電容旁路到地,這就可以抑制干擾信號的作用,在輸出端就獲得比較純凈的直流電流。
在線路板電源部分的電感一般是由線徑非常粗的漆包線環繞在塗有各種顏色的圓形磁芯上。而且附近一般有幾個高大的濾波鋁電解電容,這二者組成的就是上述的 LC濾波電路。另外,線路板還大量采用“蛇行線+貼片鉭電容”來組成LC電路,因為蛇行線在電路板上來回折行,也可以看作一個小電感。
濾波電路的原理實際是L、c元件基本特性的組合利用。因為電容器的容抗xc=2nfc又1會隨信號頻率升高而變小,而電感器的感抗xl=2f會隨信號頻率升高而增大,如果把電容、電感進行串聯、並聯或混聯應用,它們組合的阻抗也會隨信號頻率不同而發生很人變化口這表明,不同濾波電路會對某種頻率信號呈現很小或很大的電抗,以致能讓該頻率信號順利通過或阻礙它通過,從而起到選取某種頻率信號和濾除某種頻率信號的作用。
以圖9—3(a)所示的濾波電路來說,當有信號從左至右傳輸時,L對低頻信號阻礙小,對高頻信號阻礙大;C則對低頻信號衰減小,對高頻信號衰減大。因此該濾波電路容易通過低頻信號,稱為低通濾波電路。其特點可用圖中的幅一頻(UF特性f}}I線表示。 對於圖9—3(b)所示的濾波電路來說,容易通過高頻信號,所以稱為高通濾波電路。 對於圖9—3(c)所示的濾波電路,它利用C l和L1串聯對諧振信號阻抗小、C2和L7並聯對諧 振信號阻抗大的特性,能讓諧振信號f容易通過,而阻礙其他頻率信號通過,所以稱為帶通濾波電路。該電路的這種特點可用圖中的幅一頻(U-F特性曲線概括。 對於圖9—3(d)所示的濾波電路,它利用Cl和Ll並聯對諧振信號阻抗大、C,和L,,串聯對諧振信號阻抗小的特點,容易讓諧振頻率以外的信號通過,而抑制諧振信號廠F通過,所以稱為帶阻濾波電路。該電路的特點可用圖中的幅一頻(U-F性曲線來概括。
LC濾波電路時間常數的計算:
(1)rc振盪回路電容器的電壓有:
電壓=U*exp(-t/rc)
U表示電壓初值,rc表示電阻電容,t為經過的時間,exp(-t/rc)表示e的-t/rc次方。
時間常數τ =rc
即電容電阻的乘積,引入時間常數后電壓=U*exp(-t/τ)
因此,零輸入響應的電壓變化是一個指數衰減的過程,理論上是無窮時間,但一般是到3~5個時間常數就認為衰減結束了。
因此放電時間取決於時間常數τ =rc
(2)對於lc振盪回路,情況比較復雜,你只記得於LC的乘積有關就可以了。
詳細的來說,對一般的LRC回路按
R》2*sqr(L/R)
R=2*sqr(L/R)
R《2*sqr(L/R)
sqr(X)表示根號下(X)
分為三種情況,大致地說,放電時間取決於電路中R,L,C的值,U不等於0而I=0時,電容通過L,R放電
解二階偏微分方程可以得到兩個特征值如:
p1=-(R/2L)+spr[(R/2L)*(R/2L)-1/LC]
p1=-(R/2L)-spr[(R/2L)*(R/2L)-1/LC]
電容電壓=[U/(p2-p1)]*[p2exp(p1*t)-p1exp(p2*t)]
據此可以分析電容放電時間與LRC的關系.