https://blog.csdn.net/confuciust/article/details/78982264
在終端執行程序時指定GPU
CUDA_VISIBLE_DEVICES=1 python your_file.py
這樣在跑你的網絡之前,告訴程序只能看到1號GPU,其他的GPU它不可見
可用的形式如下:
CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen
CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES=”0,1” Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked
CUDA_VISIBLE_DEVICES=”” No GPU will be visible
在Python代碼中指定GPU
import os
os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID”
os.environ[“CUDA_VISIBLE_DEVICES”] = “0”
設置定量的GPU使用量
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的顯存
session = tf.Session(config=config)
設置最小的GPU使用量
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)