用標題中的四種方式解析網頁,比較其解析速度。當然比較結果數值與電腦配置,python版本都有關系,但總體差別不會很大。
下面是我的結果,lxml xpath最快,bs4最慢
==== Python version: 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] ===== ==== Total trials: 10000 ===== bs4 total time: 5.5 pq total time: 0.9 lxml (cssselect) total time: 0.8 lxml (xpath) total time: 0.5 regex total time: 1.1 (doesn't find all p)
以下是測試代碼
# -*- coding: utf-8 -*- """ @Datetime: 2019/3/13 @Author: Zhang Yafei """ import re import sys import time import requests from lxml.html import fromstring from pyquery import PyQuery as pq from bs4 import BeautifulSoup as bs headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'} def Timer(): a = time.time() while True: c = time.time() yield time.time() - a a = c # ################# start request ################# timer = Timer() url = "https://www.python.org/" html = requests.get(url, headers=headers).text num = 10000 print('\n==== Python version: %s =====' % sys.version) print('\n==== Total trials: %s =====' % num) next(timer) # ################# bs4 ######################### soup = bs(html, 'lxml') for x in range(num): paragraphs = soup.findAll('p') t = next(timer) print('bs4 total time: %.1f' % t) # ################ pyquery ####################### d = pq(html) for x in range(num): paragraphs = d('p') t = next(timer) print('pq total time: %.1f' % t) # ############### lxml css ######################### tree = fromstring(html) for x in range(num): paragraphs = tree.cssselect('p') t = next(timer) print('lxml (cssselect) total time: %.1f' % t) # ############## lxml xpath ####################### tree = fromstring(html) for x in range(num): paragraphs = tree.xpath('.//p') t = next(timer) print('lxml (xpath) total time: %.1f' % t) # ############### re ########################## for x in range(num): paragraphs = re.findall('<[p ]>.*?</p>', html) t = next(timer) print('regex total time: %.1f (doesn\'t find all p)\n' % t)
測試代碼二
# -*- coding: utf-8 -*- """ @Datetime: 2019/3/13 @Author: Zhang Yafei """ import functools import re import sys import time import requests from bs4 import BeautifulSoup as bs from lxml.html import fromstring from pyquery import PyQuery as pq def timeit(fun): @functools.wraps(fun) def wrapper(*args, **kwargs): start_time = time.time() res = fun(*args, **kwargs) print('運行時間為%.6f' % (time.time() - start_time)) return res return wrapper @timeit # time1 = timeit(time) def time1(n): return [i * 2 for i in range(n)] # ################# start request ################# url = "https://www.taobao.com/" html = requests.get(url).text num = 10000 print('\n==== Python version: %s =====' % sys.version) print('\n==== Total trials: %s =====' % num) @timeit def bs4_test(): soup = bs(html, 'lxml') for x in range(num): paragraphs = soup.findAll('p') print('bs4 total time:') @timeit def pq_test(): d = pq(html) for x in range(num): paragraphs = d('p') print('pq total time:') @timeit def lxml_css(): tree = fromstring(html) for x in range(num): paragraphs = tree.cssselect('p') print('lxml (cssselect) total time:') @timeit def lxml_xpath(): tree = fromstring(html) for x in range(num): paragraphs = tree.xpath('.//p') print('lxml (xpath) total time:') @timeit def re_test(): for x in range(num): paragraphs = re.findall('<[p ]>.*?</p>', html) print('regex total time:') if __name__ == '__main__': bs4_test() pq_test() lxml_css() lxml_xpath() re_test()
測試結果
==== Python version: 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] ===== ==== Total trials: 10000 ===== bs4 total time: 運行時間為9.049424 pq total time: 運行時間為0.899639 lxml (cssselect) total time: 運行時間為0.841596 lxml (xpath) total time: 運行時間為0.619440 regex total time: 運行時間為1.207861