CVPR2018+ECCV2018目標檢測算法匯總


 

 

 

特別感謝實驗室小雷同學匯總此篇,日后學習目標跟蹤可以有個好的方向好的借鑒,哪怕是比賽的時候選模型都可以參考一下。

----------------------------------------------------------

論文對應序號

method

dataset

code

 

 

VOC2007

VOC2012

COCO

 

1

Cascade R-CNN

 

 

42.8(AP)

2

Relation Net

 

 

39.0(加到別的方法上)

3

RefineDet

85.8

86.8

41.8(AP)

4

SNIP

 

 

 

5

R-FCN-3000

43.3(ImageNet)

6

DES

84.3

83.7

32.8

7

STDN

80.9

 

31.8

8

W2F

52.4

47.8

 

9

無簡寫

51.2

 

 

10

MELM

47.3

42.4

 

11

SSM

62.9

 

 

12

無簡寫

82.9

 

35.6(AP)

13

PAD

80.7

79.5

 

14

ZLDN

47.6

42.9

 

15

無簡寫

 

 

39.5

16

MegDet

 

 

52.5(mmAP)

17

drl-RPN

76.4

72.2

 

18

SIN

76.0

73.1

23.2(AP)

19

SOD-MTGAN

 

 

41.4(AP)

20

ML-LocNet

49.7

43.6

16.2(COCO2014)

21

DetNet

 

 

40.3

22

無簡寫

50.4

69.3

 

23

無簡寫

25.4

22.9

 

24

無簡寫

82.4

81.1

34.6(AP)

25

RFB-NET

82.2

 

29.7(COCO2014)

34.4(COCO2015)

26

PFP-NET

84.1

83.7

41.8

27

TS2C

44.3

40.0

 

28

SAN

82.8

 

43.4

29

無簡寫

 

81.2

mmAP:39.3(COCO2017)

30

無簡寫

 

 

42.0(AP)

附:

(1)論文對應序號中,序號1-18篇收錄於CVPR19-30收錄於ECCV。

(2)在經典數據庫的檢測精度取在論文中實現的最高精度,不考慮base network。

(3)method列僅寫出算法簡稱。

(4)針對COCO數據集的檢測結果不可進行統一比較。有的是在COCO2014COCO2015或者是COCO2017上測試,評價指標稍有不同。

(5)CVPR2019論文未公布。

 

======以下排名僅對論文中有在對應數據集測試的算法進行排序=========

 

VOC2007數據集排名

論文對應序號

method

mAP

排名

3

RefineDet

85.8

1

6

DES

84.3

2

26

PFP-NET

84.1

3

12

無簡寫

82.9

4

28

SAN

82.8

5

24

無簡寫

82.4

6

25

RFB-NET

82.2

7

7

STDN

80.9

8

13

PAD

80.7

9

17

drl-RPN

76.4

10

18

SIN

76.0

11

11

SSM

62.9

12

8

W2F

52.4

13

9

無簡寫

51.2

14

22

無簡寫

50.4

15

20

ML-LocNet

49.7

16

14

ZLDN

47.6

17

10

MELM

47.3

18

27

TS2C

44.3

19

23

無簡寫

25.4

20

 

VOC2012數據集排名

論文對應序號

method

mAP

排名

3

RefineDet

86.8

1

6

DES

83.7

2

26

PFP-NET

83.7

2

29

無簡寫

81.2

3

24

無簡寫

81.1

4

13

PAD

79.5

5

18

SIN

73.1

6

17

drl-RPN

72.2

7

22

無簡寫

69.3

8

8

W2F

47.8

9

20

ML-LocNet

43.6

10

14

ZLDN

42.9

11

10

MELM

42.4

12

27

TS2C

40.0

13

23

無簡寫

22.9

14

22

無簡寫

50.4

15

20

ML-LocNet

49.7

16

14

ZLDN

47.6

17

10

MELM

47.3

18

27

TS2C

44.3

19

23

無簡寫

25.4

20

 

COCO數據集排名

論文對應序號

method

mAP

排名

16

MegDet

52.5(mmAP)

1

28

SAN

43.4

2

1

Cascade R-CNN

42.8(AP)

3

30

無簡寫

42.0(AP)

4

26

PFP-NET

41.8

5

3

RefineDet

41.8(AP)

6

19

SOD-MTGAN

41.4(AP)

7

21

DetNet

40.3

8

15

無簡寫

39.5

9

29

無簡寫

mmAP:39.3(COCO2017)

10

2

Relation Net

39.0(加到別的方法上)

11

12

無簡寫

35.6(AP)

12

24

無簡寫

34.6(AP)

13

25

RFB-NET

29.7(COCO2014)

34.4(COCO2015)

14

6

DES

32.8

15

7

STDN

31.8

16

18

SIN

23.2(AP)

17

20

ML-LocNet

16.2(COCO2014)

18

1Cascaded RCNN 

論文

Cascade R-CNN : Delving into High Quality Object Detection

論文鏈接

https://arxiv.org/abs/1712.00726

代碼鏈接

https://github.com/zhaoweicai/cascade-rcnn

實驗結果

 

2、Relation Net

論文

Relation Networks for Object Detection

論文鏈接

https://arxiv.org/abs/1711.11575

代碼鏈接

https://github.com/msracver/Relation-Networks-for-Object-Detection

 

實驗結果

(實驗是針對two stage系列的目標檢測算法而言,在ROI Pooling后的兩個全連接層和NMS模塊引入object relation module,如Figure1所示,因此做到了完整的end-to-end訓練。)

3、RefineDet

論文

Single-Shot Refinement Neural Network for Object Detection

論文鏈接

https://arxiv.org/abs/1711.06897

代碼鏈接

https://github.com/sfzhang15/RefineDet

 

實驗結果

4、SNIP 

論文

An Analysis of Scale Invariance in Object Detection – SNIP

論文鏈接

https://arxiv.org/abs/1711.08189

代碼鏈接

http://bit.ly/2yXVg4c(打不開)

 

實驗結果

5R-FCN-3000 

論文

R-FCN-3000 at 30fps: Decoupling Detection and Classification

論文鏈接

https://arxiv.org/abs/1712.01802

代碼鏈接

 

ImageNet實驗結果

 

 

6、DES 

論文

Single-Shot Object Detection with Enriched Semantics

論文鏈接

https://arxiv.org/abs/1712.00433

代碼鏈接

 

 

實驗結果

7、STDN 

論文

Scale-Transferrable Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf

代碼鏈接

https://github.com/arvention/STDN

 

實驗結果

8W2F

論文

W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_W2F_A_Weakly-Supervised_CVPR_2018_paper.pd

代碼鏈接

 

實驗結果

9

論文

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf

代碼鏈接

 

實驗結果

 

10MELM

論文

Min-Entropy Latent Model for Weakly Supervised Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf

代碼鏈接

https://github.com/Winfrand/MELM

實驗結果

11SSM

論文

Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf

代碼鏈接

https://github.com/yanxp/SSM-Pytorch

實驗結果

12

論文

Feature Selective Networks for Object Detection

論文鏈接

https://arxiv.org/abs/1711.08879

代碼鏈接

https://github.com/robwec/feature-selective-networks

實驗結果

13PAD

論文

Pseudo Mask Augmented Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Pseudo_Mask_Augmented_CVPR_2018_paper.pdf

代碼鏈接

 

實驗結果

 

 

 

14ZLDN

論文

Zigzag Learning for Weakly Supervised Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Zigzag_Learning_for_CVPR_2018_paper.pdf

代碼鏈接

 

實驗結果

 

 

 

15

論文

Learning Globally Optimized Object Detector via Policy Gradient

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf

代碼鏈接

 

實驗結果

 

 

16MegDet

論文

MegDet: A Large Mini-Batch Object Detector

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf

代碼鏈接

 

實驗結果

The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task.

 

 

17drl-RPN

論文

Deep Reinforcement Learning of Region Proposal Networks for Object Detection

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Pirinen_Deep_Reinforcement_Learning_CVPR_2018_paper.pdf

代碼鏈接

https://github.com/aleksispi/drl-rpn-tf

實驗結果

 

 

 

18SIN

論文

Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships

論文鏈接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf

代碼鏈接

https://github.com/choasup/SIN

實驗結果

 

 

 

 

 

以下是ECCV2018論文

19SOD-MTGAN

論文:SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

20ML-LocNet

論文:ML-LocNet: Improving Object Localization with Multi-view Learning Network

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaopeng_Zhang_ML-LocNet_Improving_Object_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

 

 

21DetNet

論文:DetNet: Design Backbone for Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Zeming_Li_DetNet_Design_Backbone_ECCV_2018_paper.pdf

代碼鏈接:https://github.com/guoruoqian/DetNet_pytorch

或者https://github.com/BigDeviltjj/mxnet-detnet

實驗結果

 

 

22

論文:Weakly Supervised Region Proposal Network and Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

 

 

23

論文:Zero-Annotation Object Detection with Web Knowledge Transfer

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

 

 

 

 

24

論文:Deep Feature Pyramid Reconfiguration for Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Kong_Deep_Feature_Pyramid_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

 

 

25RFB-NET

論文:Receptive Field Block Net for Accurate and Fast Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

代碼鏈接:https://github.com/ruinmessi/RFBNet

實驗結果

 

 

 

 

26PFP-NET

論文:Parallel Feature Pyramid Network for Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Seung-Wook_Kim_Parallel_Feature_Pyramid_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

27TS2C

論文:TS2C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yunchao_Wei_TS2C_Tight_Box_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

28SAN

論文:

SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Kim_SAN_Learning_Relationship_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

29

論文:Deep Regionlets for Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Hongyu_Xu_Deep_Regionlets_for_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 

 

 

30

論文:Context Refinement for Object Detection

論文鏈接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhe_Chen_Context_Refinement_for_ECCV_2018_paper.pdf

代碼鏈接:

實驗結果

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM