InfluxDB是一個開源的時序數據庫,使用GO語言開發,特別適合用於處理和分析資源監控數據這種時序相關數據。而InfluxDB自帶的各種特殊函數如求標准差,隨機取樣數據,統計數據變化比等,使數據統計和實時分析變得十分方便。在我們的容器資源監控系統中,就采用了InfluxDB存儲cadvisor的監控數據。本文對InfluxDB的基本概念和一些特色功能做一個詳細介紹,內容主要是翻譯整理自官網文檔,如有錯漏,請指正。
1 安裝配置
這里說一下使用docker容器運行influxdb的步驟,物理機安裝請參照官方文檔。拉取鏡像文件后運行即可,當前最新版本是1.3.5。啟動容器時設置掛載的數據目錄和開放端口。InfluxDB的操作語法InfluxQL與SQL基本一致,也提供了一個類似mysql-client的名為influx的CLI。InfluxDB本身是支持分布式部署多副本存儲的,本文介紹都是針對的單節點單副本。
# docker pull influxdb
# docker run -idt --name influxdb -p 8086:8086 -v /Users/ssj/influxdb:/var/lib/influxdb influxdb
f216e9be15bff545befecb30d1d275552026216a939cc20c042b17419e3bde31
# docker exec -it influxdb /bin/bash
root@f216e9be15bf:/# influx
Connected to http://localhost:8086 version 1.3.5
InfluxDB shell version: 1.3.5
> create database cadvisor ## 創建數據庫cadvisor
> show databases
name: databases
name
----
_internal
cadvisor
> CREATE USER testuser WITH PASSWORD 'testpwd' ## 創建用戶和設置密碼
> GRANT ALL PRIVILEGES ON cadvisor TO testuser ## 授權數據庫給指定用戶
> CREATE RETENTION POLICY "cadvisor_retention" ON "cadvisor" DURATION 30d REPLICATION 1 DEFAULT ## 創建默認的數據保留策略,設置保存時間30天,副本為1
2 重要概念
influxdb里面有一些重要概念:database,timestamp,field key, field value, field set,tag key,tag value,tag set,measurement, retention policy ,series,point。結合下面的例子數據來說明這幾個概念:
name: census
-————————————
time butterflies honeybees location scientist
2015-08-18T00:00:00Z 12 23 1 langstroth
2015-08-18T00:00:00Z 1 30 1 perpetua
2015-08-18T00:06:00Z 11 28 1 langstroth
2015-08-18T00:06:00Z 3 28 1 perpetua
2015-08-18T05:54:00Z 2 11 2 langstroth
2015-08-18T06:00:00Z 1 10 2 langstroth
2015-08-18T06:06:00Z 8 23 2 perpetua
2015-08-18T06:12:00Z 7 22 2 perpetua
timestamp
既然是時間序列數據庫,influxdb的數據都有一列名為time的列,里面存儲UTC時間戳。
field key,field value,field set
butterflies和honeybees兩列數據稱為字段(fields),influxdb的字段由field key和field value組成。其中butterflies和honeybees為field key,它們為string類型,用於存儲元數據。
而butterflies這一列的數據12-7為butterflies的field value,同理,honeybees這一列的23-22為honeybees的field value。field value可以為string,float,integer或boolean類型。field value通常都是與時間關聯的。
field key和field value對組成的集合稱之為field set。如下:
butterflies = 12 honeybees = 23
butterflies = 1 honeybees = 30
butterflies = 11 honeybees = 28
butterflies = 3 honeybees = 28
butterflies = 2 honeybees = 11
butterflies = 1 honeybees = 10
butterflies = 8 honeybees = 23
butterflies = 7 honeybees = 22
在influxdb中,字段必須存在。注意,字段是沒有索引的。如果使用字段作為查詢條件,會掃描符合查詢條件的所有字段值,性能不及tag。類比一下,fields相當於SQL的沒有索引的列。
tag key,tag value,tag set
location和scientist這兩列稱為標簽(tags),標簽由tag key和tag value組成。location這個tag key有兩個tag value:1和2,scientist有兩個tag value:langstroth和perpetua。tag key和tag value對組成了tag set,示例中的tag set如下:
location = 1, scientist = langstroth
location = 2, scientist = langstroth
location = 1, scientist = perpetua
location = 2, scientist = perpetua
tags是可選的,但是強烈建議你用上它,因為tag是有索引的,tags相當於SQL中的有索引的列。tag value只能是string類型 如果你的常用場景是根據butterflies和honeybees來查詢,那么你可以將這兩個列設置為tag,而其他兩列設置為field,tag和field依據具體查詢需求來定。
measurement
measurement是fields,tags以及time列的容器,measurement的名字用於描述存儲在其中的字段數據,類似mysql的表名。如上面例子中的measurement為census。measurement相當於SQL中的表,本文中我在部分地方會用表來指代measurement。
retention policy
retention policy指數據保留策略,示例數據中的retention policy為默認的autogen。它表示數據一直保留永不過期,副本數量為1。你也可以指定數據的保留時間,如30天。
series
series是共享同一個retention policy,measurement以及tag set的數據集合。示例中數據有4個series,如下:
Arbitrary series number | Retention policy | Measurement | Tag set |
---|---|---|---|
series 1 | autogen | census | location = 1,scientist = langstroth |
series 2 | autogen | census | location = 2,scientist = langstroth |
series 3 | autogen | census | location = 1,scientist = perpetua |
series 4 | autogen | census | location = 2,scientist = perpetua |
point
point則是同一個series中具有相同時間的field set,points相當於SQL中的數據行。如下面就是一個point:
name: census
-----------------
time butterflies honeybees location scientist
2015-08-18T00:00:00Z 1 30 1 perpetua
database
上面提到的結構都存儲在數據庫中,示例的數據庫為my_database。一個數據庫可以有多個measurement,retention policy, continuous queries以及user。influxdb是一個無模式的數據庫,可以很容易的添加新的measurement,tags,fields等。而它的操作卻和傳統的數據庫一樣,可以使用類SQL語言查詢和修改數據。
influxdb不是一個完整的CRUD數據庫,它更像是一個CR-ud數據庫。它優先考慮的是增加和讀取數據而不是更新和刪除數據的性能,而且它阻止了某些更新和刪除行為使得創建和讀取數據更加高效。
3 特色函數
influxdb函數分為聚合函數,選擇函數,轉換函數,預測函數等。除了與普通數據庫一樣提供了基本操作函數外,還提供了一些特色函數以方便數據統計計算,下面會一一介紹其中一些常用的特色函數。
- 聚合函數:
FILL()
,INTEGRAL()
,SPREAD()
,STDDEV()
,MEAN()
,MEDIAN()
等。 - 選擇函數:
SAMPLE()
,PERCENTILE()
,FIRST()
,LAST()
,TOP()
,BOTTOM()
等。 - 轉換函數:
DERIVATIVE()
,DIFFERENCE()
等。 - 預測函數:
HOLT_WINTERS()
。
先從官網導入測試數據(注:這里測試用的版本是1.3.1,最新版本是1.3.5):
$ curl https://s3.amazonaws.com/noaa.water-database/NOAA_data.txt -o NOAA_data.txt
$ influx -import -path=NOAA_data.txt -precision=s -database=NOAA_water_database
$ influx -precision rfc3339 -database NOAA_water_database
Connected to http://localhost:8086 version 1.3.1
InfluxDB shell 1.3.1
> show measurements
name: measurements
name
----
average_temperature
distincts
h2o_feet
h2o_pH
h2o_quality
h2o_temperature
> show series from h2o_feet;
key
---
h2o_feet,location=coyote_creek
h2o_feet,location=santa_monica
下面的例子都以官方示例數據庫來測試,這里只用部分數據以方便觀察。measurement為h2o_feet
,tag key為location
,field key有level description
和water_level
兩個。
> SELECT * FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time level description location water_level
---- ----------------- -------- -----------
2015-08-18T00:00:00Z between 6 and 9 feet coyote_creek 8.12
2015-08-18T00:00:00Z below 3 feet santa_monica 2.064
2015-08-18T00:06:00Z between 6 and 9 feet coyote_creek 8.005
2015-08-18T00:06:00Z below 3 feet santa_monica 2.116
2015-08-18T00:12:00Z between 6 and 9 feet coyote_creek 7.887
2015-08-18T00:12:00Z below 3 feet santa_monica 2.028
2015-08-18T00:18:00Z between 6 and 9 feet coyote_creek 7.762
2015-08-18T00:18:00Z below 3 feet santa_monica 2.126
2015-08-18T00:24:00Z between 6 and 9 feet coyote_creek 7.635
2015-08-18T00:24:00Z below 3 feet santa_monica 2.041
2015-08-18T00:30:00Z between 6 and 9 feet coyote_creek 7.5
2015-08-18T00:30:00Z below 3 feet santa_monica 2.051
GROUP BY,FILL()
如下語句中GROUP BY time(12m),*
表示以每12分鍾和tag(location)分組(如果是GROUP BY time(12m)
則表示僅每12分鍾分組,GROUP BY 參數只能是time和tag)。然后fill(200)表示如果這個時間段沒有數據,以200填充,mean(field_key)求該范圍內數據的平均值(注意:這是依據series來計算。其他還有SUM求和,MEDIAN求中位數)。LIMIT 7表示限制返回的point(記錄數)最多為7條,而SLIMIT 1則是限制返回的series為1個。
注意這里的時間區間,起始時間為整點前包含這個區間第一個12m的時間,比如這里為 2015-08-17T:23:48:00Z
,第一條為 2015-08-17T23:48:00Z <= t < 2015-08-18T00:00:00Z
這個區間的location=coyote_creek
的water_level
的平均值,這里沒有數據,於是填充的200。第二條為 2015-08-18T00:00:00Z <= t < 2015-08-18T00:12:00Z
區間的location=coyote_creek
的water_level
平均值,這里為 (8.12+8.005)/ 2 = 8.0625
,其他以此類推。
而GROUP BY time(10m)
則表示以10分鍾分組,起始時間為包含這個區間的第一個10m的時間,即 2015-08-17T23:40:00Z
。默認返回的是第一個series,如果要計算另外那個series,可以在SQL語句后面加上 SOFFSET 1
。
那如果時間小於數據本身采集的時間間隔呢,比如GROUP BY time(10s)
呢?這樣的話,就會按10s取一個點,沒有數值的為空或者FILL填充,對應時間點有數據則保持不變。
## GROUP BY time(12m)
> SELECT mean("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m),* fill(200) LIMIT 7 SLIMIT 1
name: h2o_feet
tags: location=coyote_creek
time mean
---- ----
2015-08-17T23:48:00Z 200
2015-08-18T00:00:00Z 8.0625
2015-08-18T00:12:00Z 7.8245
2015-08-18T00:24:00Z 7.5675
## GROUP BY time(10m),SOFFSET設置為1
> SELECT mean("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(10m),* fill(200) LIMIT 7 SLIMIT 1 SOFFSET 1
name: h2o_feet
tags: location=santa_monica
time mean
---- ----
2015-08-17T23:40:00Z 200
2015-08-17T23:50:00Z 200
2015-08-18T00:00:00Z 2.09
2015-08-18T00:10:00Z 2.077
2015-08-18T00:20:00Z 2.041
2015-08-18T00:30:00Z 2.051
INTEGRAL(field_key, unit)
計算數值字段值覆蓋的曲面的面積值並得到面積之和。測試數據如下:
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time water_level
---- -----------
2015-08-18T00:00:00Z 2.064
2015-08-18T00:06:00Z 2.116
2015-08-18T00:12:00Z 2.028
2015-08-18T00:18:00Z 2.126
2015-08-18T00:24:00Z 2.041
2015-08-18T00:30:00Z 2.051
使用INTERGRAL計算面積。注意,這個面積就是這些點連接起來后與時間圍成的不規則圖形的面積,注意unit默認是以1秒計算,所以下面語句計算結果為3732.66=2.028*1800+分割出來的梯形和三角形面積
。如果unit改為1分,則結果為3732.66/60 = 62.211
。unit為2分,則結果為3732.66/120 = 31.1055
。以此類推。
# unit為默認的1秒
> SELECT INTEGRAL("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time integral
---- --------
1970-01-01T00:00:00Z 3732.66
# unit為1分
> SELECT INTEGRAL("water_level", 1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time integral
---- --------
1970-01-01T00:00:00Z 62.211
SPREAD(field_key)
計算數值字段的最大值和最小值的差值。
> SELECT SPREAD("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m),* fill(18) LIMIT 3 SLIMIT 1 SOFFSET 1
name: h2o_feet
tags: location=santa_monica
time spread
---- ------
2015-08-17T23:48:00Z 18
2015-08-18T00:00:00Z 0.052000000000000046
2015-08-18T00:12:00Z 0.09799999999999986
STDDEV(field_key)
計算字段的標准差。influxdb用的是貝塞爾修正的標准差計算公式 ,如下:
- mean=(v1+v2+...+vn)/n;
- stddev = math.sqrt(
((v1-mean)2 + (v2-mean)2 + ...+(vn-mean)2)/(n-1)
)
> SELECT STDDEV("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m),* fill(18) SLIMIT 1;
name: h2o_feet
tags: location=coyote_creek
time stddev
---- ------
2015-08-17T23:48:00Z 18
2015-08-18T00:00:00Z 0.08131727983645186
2015-08-18T00:12:00Z 0.08838834764831845
2015-08-18T00:24:00Z 0.09545941546018377
PERCENTILE(field_key, N)
選取某個字段中大於N%的這個字段值。
如果一共有4條記錄,N為10,則10%*4=0.4,四舍五入為0,則查詢結果為空。N為20,則 20% * 4 = 0.8,四舍五入為1,選取的是4個數中最小的數。如果N為40,40% * 4 = 1.6,四舍五入為2,則選取的是4個數中第二小的數。由此可以看出N=100時,就跟MAX(field_key)
是一樣的,而當N=50時,與MEDIAN(field_key)
在字段值為奇數個時是一樣的。
> SELECT PERCENTILE("water_level",20) FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time percentile
---- ----------
2015-08-17T23:48:00Z
2015-08-18T00:00:00Z 2.064
2015-08-18T00:12:00Z 2.028
2015-08-18T00:24:00Z 2.041
> SELECT PERCENTILE("water_level",40) FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time percentile
---- ----------
2015-08-17T23:48:00Z
2015-08-18T00:00:00Z 2.116
2015-08-18T00:12:00Z 2.126
2015-08-18T00:24:00Z 2.051
SAMPLE(field_key, N)
隨機返回field key的N個值。如果語句中有GROUP BY time()
,則每組數據隨機返回N個值。
> SELECT SAMPLE("water_level",2) FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z';
name: h2o_feet
time sample
---- ------
2015-08-18T00:00:00Z 2.064
2015-08-18T00:12:00Z 2.028
> SELECT SAMPLE("water_level",2) FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m);
name: h2o_feet
time sample
---- ------
2015-08-18T00:06:00Z 2.116
2015-08-18T00:06:00Z 8.005
2015-08-18T00:12:00Z 7.887
2015-08-18T00:18:00Z 7.762
2015-08-18T00:24:00Z 7.635
2015-08-18T00:30:00Z 2.051
CUMULATIVE_SUM(field_key)
計算字段值的遞增和。
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:30:00Z';
name: h2o_feet
time cumulative_sum
---- --------------
2015-08-18T00:00:00Z 8.12
2015-08-18T00:00:00Z 10.184
2015-08-18T00:06:00Z 18.189
2015-08-18T00:06:00Z 20.305
2015-08-18T00:12:00Z 28.192
2015-08-18T00:12:00Z 30.22
2015-08-18T00:18:00Z 37.982
2015-08-18T00:18:00Z 40.108
2015-08-18T00:24:00Z 47.742999999999995
2015-08-18T00:24:00Z 49.78399999999999
2015-08-18T00:30:00Z 57.28399999999999
2015-08-18T00:30:00Z 59.334999999999994
DERIVATIVE(field_key, unit) 和 NON_NEGATIVE_DERIVATIVE(field_key, unit)
計算字段值的變化比。unit默認為1s,即計算的是1秒內的變化比。
如下面的第一個數據計算方法是 (2.116-2.064)/(6*60) = 0.00014..
,其他計算方式同理。雖然原始數據是6m收集一次,但是這里的變化比默認是按秒來計算的。如果要按6m計算,則設置unit為6m即可。
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time derivative
---- ----------
2015-08-18T00:06:00Z 0.00014444444444444457
2015-08-18T00:12:00Z -0.00024444444444444465
2015-08-18T00:18:00Z 0.0002722222222222218
2015-08-18T00:24:00Z -0.000236111111111111
2015-08-18T00:30:00Z 0.00002777777777777842
> SELECT DERIVATIVE("water_level", 6m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z'
name: h2o_feet
time derivative
---- ----------
2015-08-18T00:06:00Z 0.052000000000000046
2015-08-18T00:12:00Z -0.08800000000000008
2015-08-18T00:18:00Z 0.09799999999999986
2015-08-18T00:24:00Z -0.08499999999999996
2015-08-18T00:30:00Z 0.010000000000000231
而DERIVATIVE結合GROUP BY time,以及mean可以構造更加復雜的查詢,如下所示:
> SELECT DERIVATIVE(mean("water_level"), 6m) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' group by time(12m), *
name: h2o_feet
tags: location=coyote_creek
time derivative
---- ----------
2015-08-18T00:12:00Z -0.11900000000000022
2015-08-18T00:24:00Z -0.12849999999999984
name: h2o_feet
tags: location=santa_monica
time derivative
---- ----------
2015-08-18T00:12:00Z -0.00649999999999995
2015-08-18T00:24:00Z -0.015499999999999847
這個計算其實是先根據GROUP BY time求平均值,然后對這個平均值再做變化比的計算。因為數據是按12分鍾分組的,而變化比的unit是6分鍾,所以差值除以2(12/6)才得到變化比。如第一個值是 (7.8245-8.0625)/2 = -0.1190
。
> SELECT mean("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' group by time(12m), *
name: h2o_feet
tags: location=coyote_creek
time mean
---- ----
2015-08-18T00:00:00Z 8.0625
2015-08-18T00:12:00Z 7.8245
2015-08-18T00:24:00Z 7.5675
name: h2o_feet
tags: location=santa_monica
time mean
---- ----
2015-08-18T00:00:00Z 2.09
2015-08-18T00:12:00Z 2.077
2015-08-18T00:24:00Z 2.0460000000000003
NON_NEGATIVE_DERIVATIVE
與DERIVATIVE
不同的是它只返回的是非負的變化比:
> SELECT DERIVATIVE(mean("water_level"), 6m) FROM "h2o_feet" WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' group by time(6m), *
name: h2o_feet
tags: location=santa_monica
time derivative
---- ----------
2015-08-18T00:06:00Z 0.052000000000000046
2015-08-18T00:12:00Z -0.08800000000000008
2015-08-18T00:18:00Z 0.09799999999999986
2015-08-18T00:24:00Z -0.08499999999999996
2015-08-18T00:30:00Z 0.010000000000000231
> SELECT NON_NEGATIVE_DERIVATIVE(mean("water_level"), 6m) FROM "h2o_feet" WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' group by time(6m), *
name: h2o_feet
tags: location=santa_monica
time non_negative_derivative
---- -----------------------
2015-08-18T00:06:00Z 0.052000000000000046
2015-08-18T00:18:00Z 0.09799999999999986
2015-08-18T00:30:00Z 0.010000000000000231
4 連續查詢
4.1 基本語法
連續查詢(CONTINUOUS QUERY,簡寫為CQ)是指定時自動在實時數據上進行的InfluxQL查詢,查詢結果可以存儲到指定的measurement中。基本語法格式如下:
CREATE CONTINUOUS QUERY <cq_name> ON <database_name>
BEGIN
<cq_query>
END
cq_query格式:
SELECT <function[s]> INTO <destination_measurement> FROM <measurement> [WHERE <stuff>] GROUP BY time(<interval>)[,<tag_key[s]>]
CQ操作的是實時數據,它使用本地服務器的時間戳、GROUP BY time()時間間隔以及InfluxDB預先設置好的時間范圍來確定什么時候開始查詢以及查詢覆蓋的時間范圍。注意CQ語句里面的WHERE條件是沒有時間范圍的,因為CQ會根據GROUP BY time()
自動確定時間范圍。
CQ執行的時間間隔和GROUP BY time()
的時間間隔一樣,它在InfluxDB預先設置的時間范圍的起始時刻執行。如果GROUP BY time(1h)
,則單次查詢的時間范圍為 now()-GROUP BY time(1h)
到 now()
,也就是說,如果當前時間為17點,這次查詢的時間范圍為 16:00到16:59.99999。
下面看幾個示例,示例數據如下,這是數據庫transportation
中名為bus_data
的measurement,每15分鍾統計一次乘客數和投訴數。數據文件bus_data.txt
如下:
# DDL
CREATE DATABASE transportation
# DML
# CONTEXT-DATABASE: transportation
bus_data,complaints=9 passengers=5 1472367600
bus_data,complaints=9 passengers=8 1472368500
bus_data,complaints=9 passengers=8 1472369400
bus_data,complaints=9 passengers=7 1472370300
bus_data,complaints=9 passengers=8 1472371200
bus_data,complaints=7 passengers=15 1472372100
bus_data,complaints=7 passengers=15 1472373000
bus_data,complaints=7 passengers=17 1472373900
bus_data,complaints=7 passengers=20 1472374800
導入數據,命令如下:
root@f216e9be15bf:/# influx -import -path=bus_data.txt -precision=s
root@f216e9be15bf:/# influx -precision=rfc3339 -database=transportation
Connected to http://localhost:8086 version 1.3.5
InfluxDB shell version: 1.3.5
> select * from bus_data
name: bus_data
time complaints passengers
---- ---------- ----------
2016-08-28T07:00:00Z 9 5
2016-08-28T07:15:00Z 9 8
2016-08-28T07:30:00Z 9 8
2016-08-28T07:45:00Z 9 7
2016-08-28T08:00:00Z 9 8
2016-08-28T08:15:00Z 7 15
2016-08-28T08:30:00Z 7 15
2016-08-28T08:45:00Z 7 17
2016-08-28T09:00:00Z 7 20
示例1 自動縮小取樣存儲到新的measurement中
對單個字段自動縮小取樣並存儲到新的measurement中。
CREATE CONTINUOUS QUERY "cq_basic" ON "transportation"
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
END
這個CQ的意思就是對bus_data
每小時自動計算取樣數據的平均乘客數並存儲到 average_passengers
中。那么在2016-08-28這天早上會執行如下流程:
At 8:00 cq_basic 執行查詢,查詢時間范圍 time >= '7:00' AND time < '08:00'.
cq_basic寫入一條記錄到 average_passengers:
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 7
At 9:00 cq_basic 執行查詢,查詢時間范圍 time >= '8:00' AND time < '9:00'.
cq_basic寫入一條記錄到 average_passengers:
name: average_passengers
------------------------
time mean
2016-08-28T08:00:00Z 13.75
# Results
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 7
2016-08-28T08:00:00Z 13.75
示例2 自動縮小取樣並存儲到新的保留策略(Retention Policy)中
CREATE CONTINUOUS QUERY "cq_basic_rp" ON "transportation"
BEGIN
SELECT mean("passengers") INTO "transportation"."three_weeks"."average_passengers" FROM "bus_data" GROUP BY time(1h)
END
與示例1類似,不同的是保留的策略不是autogen
,而是改成了three_weeks
(創建保留策略語法 CREATE RETENTION POLICY "three_weeks" ON "transportation" DURATION 3w REPLICATION 1
)。
> SELECT * FROM "transportation"."three_weeks"."average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 7
2016-08-28T08:00:00Z 13.75
示例3 使用后向引用(backreferencing)自動縮小取樣並存儲到新的數據庫中
CREATE CONTINUOUS QUERY "cq_basic_br" ON "transportation"
BEGIN
SELECT mean(*) INTO "downsampled_transportation"."autogen".:MEASUREMENT FROM /.*/ GROUP BY time(30m),*
END
使用后向引用語法自動縮小取樣並存儲到新的數據庫中。語法 :MEASUREMENT
用來指代后面的表,而 /.*/
則是分別查詢所有的表。這句CQ的含義就是每30分鍾自動查詢transportation
的所有表(這里只有bus_data一個表),並將30分鍾內數字字段(passengers和complaints)求平均值存儲到新的數據庫 downsampled_transportation
中。
最終結果如下:
> SELECT * FROM "downsampled_transportation."autogen"."bus_data"
name: bus_data
--------------
time mean_complaints mean_passengers
2016-08-28T07:00:00Z 9 6.5
2016-08-28T07:30:00Z 9 7.5
2016-08-28T08:00:00Z 8 11.5
2016-08-28T08:30:00Z 7 16
示例4 自動縮小取樣以及配置CQ的時間范圍
CREATE CONTINUOUS QUERY "cq_basic_offset" ON "transportation"
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h,15m)
END
與前面幾個示例不同的是,這里的GROUP BY time(1h, 15m)
指定了一個時間偏移,也就是說 cq_basic_offset
執行的時間不再是整點,而是往后偏移15分鍾。執行流程如下:
At 8:15 cq_basic_offset 執行查詢的時間范圍 time >= '7:15' AND time < '8:15'.
name: average_passengers
------------------------
time mean
2016-08-28T07:15:00Z 7.75
At 9:15 cq_basic_offset 執行查詢的時間范圍 time >= '8:15' AND time < '9:15'.
name: average_passengers
------------------------
time mean
2016-08-28T08:15:00Z 16.75
最終結果:
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T07:15:00Z 7.75
2016-08-28T08:15:00Z 16.75
4.2 高級語法
InfluxDB連續查詢的高級語法如下:
CREATE CONTINUOUS QUERY <cq_name> ON <database_name>
RESAMPLE EVERY <interval> FOR <interval>
BEGIN
<cq_query>
END
與基本語法不同的是,多了RESAMPLE
關鍵字。高級語法里CQ的執行時間和查詢時間范圍則與RESAMPLE里面的兩個interval有關系。
高級語法中CQ以EVERY interval的時間間隔執行,執行時查詢的時間范圍則是FOR interval來確定。如果FOR interval為2h,當前時間為17:00,則查詢的時間范圍為15:00-16:59.999999
。RESAMPLE的EVERY和FOR兩個關鍵字可以只有一個。
示例的數據表如下,比之前的多了幾條記錄為了示例3和示例4的測試:
name: bus_data
--------------
time passengers
2016-08-28T06:30:00Z 2
2016-08-28T06:45:00Z 4
2016-08-28T07:00:00Z 5
2016-08-28T07:15:00Z 8
2016-08-28T07:30:00Z 8
2016-08-28T07:45:00Z 7
2016-08-28T08:00:00Z 8
2016-08-28T08:15:00Z 15
2016-08-28T08:30:00Z 15
2016-08-28T08:45:00Z 17
2016-08-28T09:00:00Z 20
示例1 只配置執行時間間隔
CREATE CONTINUOUS QUERY "cq_advanced_every" ON "transportation"
RESAMPLE EVERY 30m
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
END
這里配置了30分鍾執行一次CQ,沒有指定FOR interval,於是查詢的時間范圍還是GROUP BY time(1h)
指定的一個小時,執行流程如下:
At 8:00, cq_advanced_every 執行時間范圍 time >= '7:00' AND time < '8:00'.
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 7
At 8:30, cq_advanced_every 執行時間范圍 time >= '8:00' AND time < '9:00'.
name: average_passengers
------------------------
time mean
2016-08-28T08:00:00Z 12.6667
At 9:00, cq_advanced_every 執行時間范圍 time >= '8:00' AND time < '9:00'.
name: average_passengers
------------------------
time mean
2016-08-28T08:00:00Z 13.75
需要注意的是,這里的 8點到9點這個區間執行了兩次,第一次執行時時8:30,平均值是 (8+15+15)/ 3 = 12.6667
,而第二次執行時間是9:00,平均值是 (8+15+15+17) / 4=13.75
,而且最后第二個結果覆蓋了第一個結果。InfluxDB如何處理重復的記錄可以參見這個文檔。
最終結果:
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 7
2016-08-28T08:00:00Z 13.75
示例2 只配置查詢時間范圍
CREATE CONTINUOUS QUERY "cq_advanced_for" ON "transportation"
RESAMPLE FOR 1h
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
END
只配置了時間范圍,而沒有配置EVERY interval。這樣,執行的時間間隔與GROUP BY time(30m)
一樣為30分鍾,而查詢的時間范圍為1小時,由於是按30分鍾分組,所以每次會寫入兩條記錄。執行流程如下:
At 8:00 cq_advanced_for 查詢時間范圍:time >= '7:00' AND time < '8:00'.
寫入兩條記錄。
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 6.5
2016-08-28T07:30:00Z 7.5
At 8:30 cq_advanced_for 查詢時間范圍:time >= '7:30' AND time < '8:30'.
寫入兩條記錄。
name: average_passengers
------------------------
time mean
2016-08-28T07:30:00Z 7.5
2016-08-28T08:00:00Z 11.5
At 9:00 cq_advanced_for 查詢時間范圍:time >= '8:00' AND time < '9:00'.
寫入兩條記錄。
name: average_passengers
------------------------
time mean
2016-08-28T08:00:00Z 11.5
2016-08-28T08:30:00Z 16
需要注意的是,cq_advanced_for
每次寫入了兩條記錄,重復的記錄會被覆蓋。
最終結果:
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T07:00:00Z 6.5
2016-08-28T07:30:00Z 7.5
2016-08-28T08:00:00Z 11.5
2016-08-28T08:30:00Z 16
示例3 同時配置執行時間間隔和查詢時間范圍
CREATE CONTINUOUS QUERY "cq_advanced_every_for" ON "transportation"
RESAMPLE EVERY 1h FOR 90m
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
END
這里配置了執行間隔為1小時,而查詢范圍90分鍾,最后分組是30分鍾,每次插入了三條記錄。執行流程如下:
At 8:00 cq_advanced_every_for 查詢時間范圍 time >= '6:30' AND time < '8:00'.
插入三條記錄
name: average_passengers
------------------------
time mean
2016-08-28T06:30:00Z 3
2016-08-28T07:00:00Z 6.5
2016-08-28T07:30:00Z 7.5
At 9:00 cq_advanced_every_for 查詢時間范圍 time >= '7:30' AND time < '9:00'.
插入三條記錄
name: average_passengers
------------------------
time mean
2016-08-28T07:30:00Z 7.5
2016-08-28T08:00:00Z 11.5
2016-08-28T08:30:00Z 16
最終結果:
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T06:30:00Z 3
2016-08-28T07:00:00Z 6.5
2016-08-28T07:30:00Z 7.5
2016-08-28T08:00:00Z 11.5
2016-08-28T08:30:00Z 16
示例4 配置查詢時間范圍和FILL填充
CREATE CONTINUOUS QUERY "cq_advanced_for_fill" ON "transportation"
RESAMPLE FOR 2h
BEGIN
SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h) fill(1000)
END
在前面值配置查詢時間范圍的基礎上,加上FILL填充空的記錄。執行流程如下:
At 6:00, cq_advanced_for_fill 查詢時間范圍:time >= '4:00' AND time < '6:00',沒有數據,不填充。
At 7:00, cq_advanced_for_fill 查詢時間范圍:time >= '5:00' AND time < '7:00'. 寫入兩條記錄,沒有數據的時間點填充1000。
------------------------
time mean
2016-08-28T05:00:00Z 1000 <------ fill(1000)
2016-08-28T06:00:00Z 3 <------ average of 2 and 4
[…] At 11:00, cq_advanced_for_fill 查詢時間范圍:time >= '9:00' AND time < '11:00'.寫入兩條記錄,沒有數據的點填充1000。
name: average_passengers
------------------------
2016-08-28T09:00:00Z 20 <------ average of 20
2016-08-28T10:00:00Z 1000 <------ fill(1000)
At 12:00, cq_advanced_for_fill 查詢時間范圍:time >= '10:00' AND time < '12:00'。沒有數據,不填充。
最終結果:
> SELECT * FROM "average_passengers"
name: average_passengers
------------------------
time mean
2016-08-28T05:00:00Z 1000
2016-08-28T06:00:00Z 3
2016-08-28T07:00:00Z 7
2016-08-28T08:00:00Z 13.75
2016-08-28T09:00:00Z 20
2016-08-28T10:00:00Z 1000