# -*- coding:utf-8 -*- # !/usr/bin/env python import argparse import json import matplotlib.pyplot as plt import skimage.io as io import cv2 from labelme import utils import numpy as np import glob import PIL.Image from shapely.geometry import Polygon class labelme2coco(object): def __init__(self,labelme_json=[],save_json_path='./new.json'): ''' :param labelme_json: 所有labelme的json文件路徑組成的列表 :param save_json_path: json保存位置 ''' self.labelme_json=labelme_json self.save_json_path=save_json_path self.images=[] self.categories=[] self.annotations=[] # self.data_coco = {} self.label=[] self.annID=1 self.height=0 self.width=0 self.save_json() def data_transfer(self): for num,json_file in enumerate(self.labelme_json): with open(json_file,'r') as fp: data = json.load(fp)# 加載json文件 self.images.append(self.image(data,num)) for shapes in data['shapes']: #label=shapes['label'].split('_') label=shapes['label'][:-1] print(shapes['label']) print(label) if label not in self.label: self.categories.append(self.categorie(label)) self.label.append(label) points=shapes['points'] self.annotations.append(self.annotation(points,label,num)) self.annID+=1 print(self.label) def image(self,data,num): image={} img = utils.img_b64_to_array(data['imageData'])# 解析原圖片數據 # img=io.imread(data['imagePath']) # 通過圖片路徑打開圖片 # img = cv2.imread(data['imagePath'], 0) height, width = img.shape[:2] img = None image['height']=height image['width'] = width image['id']=num+1 image['file_name'] = data['imagePath'].split('/')[-1] self.height=height self.width=width return image def categorie(self,label): categorie={} categorie['supercategory'] = label categorie['id']=len(self.label)+1 # 0 默認為背景 categorie['name'] = label return categorie def annotation(self,points,label,num): annotation={} annotation['segmentation']=[list(np.asarray(points).flatten())] poly = Polygon(points) area_ = round(poly.area,6) annotation['area'] = area_ annotation['iscrowd'] = 0 annotation['image_id'] = num+1 # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件時報錯(不知道為什么) # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用該方式轉成list annotation['bbox'] = list(map(float,self.getbbox(points))) annotation['category_id'] = self.getcatid(label) annotation['id'] = self.annID return annotation def getcatid(self,label): for categorie in self.categories: if label==categorie['name']: return categorie['id'] return -1 def getbbox(self,points): # img = np.zeros([self.height,self.width],np.uint8) # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 畫邊界線 # cv2.fillPoly(img, [np.asarray(points)], 1) # 畫多邊形 內部像素值為1 polygons = points mask = self.polygons_to_mask([self.height,self.width], polygons) return self.mask2box(mask) def mask2box(self, mask): '''從mask反算出其邊框 mask:[h,w] 0、1組成的圖片 1對應對象,只需計算1對應的行列號(左上角行列號,右下角行列號,就可以算出其邊框) ''' # np.where(mask==1) index = np.argwhere(mask == 1) rows = index[:, 0] clos = index[:, 1] # 解析左上角行列號 left_top_r = np.min(rows)# y left_top_c = np.min(clos)# x # 解析右下角行列號 right_bottom_r = np.max(rows) right_bottom_c = np.max(clos) # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)] # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)] # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r]# [x1,y1,x2,y2] return [left_top_c, left_top_r, right_bottom_c-left_top_c, right_bottom_r-left_top_r]# [x1,y1,w,h] 對應COCO的bbox格式 def polygons_to_mask(self,img_shape, polygons): mask = np.zeros(img_shape, dtype=np.uint8) mask = PIL.Image.fromarray(mask) xy = list(map(tuple, polygons)) PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1) mask = np.array(mask, dtype=bool) return mask def data2coco(self): data_coco={} data_coco['images']=self.images data_coco['categories']=self.categories data_coco['annotations']=self.annotations return data_coco def save_json(self): self.data_transfer() self.data_coco = self.data2coco() # 保存json文件 json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4)# indent=4 更加美觀顯示 labelme_json=glob.glob('./*.json') # labelme_json=['./1.json'] labelme2coco(labelme_json,'./new.json')