kdeplot(核密度估計圖) & distplot


Seaborn是基於matplotlib的Python可視化庫。 它提供了一個高級界面來繪制有吸引力的統計圖形。Seaborn其實是在matplotlib的基礎上進行了更高級的API封裝,從而使得作圖更加容易,不需要經過大量的調整就能使你的圖變得精致。 但應強調的是,應該把Seaborn視為matplotlib的補充,而不是替代物。

kdeplot(核密度估計圖)

核密度估計(kernel density estimation)是在概率論中用來估計未知的密度函數,屬於非參數檢驗方法之一。通過核密度估計圖可以比較直觀的看出數據樣本本身的分布特征。具體用法如下

*seaborn.kdeplot(data,data2=None,shade=False,vertical=False,kernel='gau',bw='scott',gridsize=100,cut=3,clip=None,legend=True,cumulative=False,shade_lowest=True,cbar=False, cbar_ax=None, cbar_kws=None, ax=None, *kwargs)

  

 

distplot

displot()集合了matplotlib的hist()與核函數估計kdeplot的功能,增加了rugplot分布觀測條顯示與利用scipy庫fit擬合參數分布的新穎用途。具體用法如下:

 

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM