本次分類問題使用的數據集是MNIST,每個圖像的大小為\(28*28\)。
編寫代碼的步驟如下
- 載入數據集,分別為訓練集和測試集
- 讓數據集可以迭代
- 定義模型,定義損失函數,訓練模型
代碼
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
'''下載訓練集和測試集'''
train_dataset = dsets.MNIST(root='./datasets',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./datasets',
train=False,
transform=transforms.ToTensor())
'''讓數據集可以迭代'''
batch_size = 100
n_iters = 3000
num_epochs = n_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
'''定義模型'''
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
out = self.linear(x)
return out
'''實例化模型'''
input_dim = 28*28
output_dim = 10
model = LogisticRegressionModel(input_dim, output_dim)
'''定義損失計算方式'''
criterion = nn.CrossEntropyLoss()
learning_rate = 0.001
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
'''訓練次數'''
iter = 0
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
#梯度置零
optimizer.zero_grad()
#計算輸出
outputs = model(images)
#計算損失,內部會自動softmax然后進行Crossentropy
loss = criterion(outputs, labels)
#反向傳播
loss.backward()
#更新參數
optimizer.step()
iter += 1
if iter % 500 == 0:
#計算准確度
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
#獲得輸出,輸出的大小為(batch_size,10)
outputs = model(images)
#獲得預測值,輸出的大小為(batch_size,1)
_, predicted = torch.max(outputs.data, 1)
#labels的size是(100,)
total += labels.size(0)
#返回的是預測值和標簽值相等的個數
correct += (predicted == labels).sum()
accuracy = 100 * correct / total
# Print Loss
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.data[0], accuracy))