記錄瞬間
首先,要安裝一些第三方包
pip install scipy
Collecting scipy
Downloading https://files.pythonhosted.org/packages/f1/b8/800d98339427199305f8b4a7f02827ec9bfea438d677aecbe0bd297092d5/scipy-1.2.0-cp37-cp37m-win_amd64.whl (31.7MB)
100% |████████████████████████████████| 31.7MB 167kB/s
Requirement already satisfied: numpy>=1.8.2 in d:\systemtools\python37\lib\site-packages (from scipy) (1.15.4)
Installing collected packages: scipy
Successfully installed scipy-1.2.0
pip install jieba
Collecting jieba
Downloading https://files.pythonhosted.org/packages/71/46/c6f9179f73b818d5827202ad1c4a94e371a29473b7f043b736b4dab6b8cd/jieba-0.39.zip (7.3MB)
100% |████████████████████████████████| 7.3MB 513kB/s
Building wheels for collected packages: jieba
Running setup.py bdist_wheel for jieba ... done
Stored in directory: C:\Users\sunzhongan\AppData\Local\pip\Cache\wheels\c9\c7\63\a9ec0322ccc7c365fd51e475942a82395807186e94f0522243
Successfully built jieba
Installing collected packages: jieba
Successfully installed jieba-0.39
pip install matplotlib
Collecting matplotlib
Downloading https://files.pythonhosted.org/packages/5c/ee/efaf04efc763709f6840cd8d08865d194f7453f43e98d042c92755cdddec/matplotlib-3.0.2-cp37-cp37m-win_amd64.whl (8.9MB)
100% |████████████████████████████████| 8.9MB 93kB/s
Collecting kiwisolver>=1.0.1 (from matplotlib)
Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/kiwisolver/
Downloading https://files.pythonhosted.org/packages/7c/be/7ae355b45699460e369ebf88d86058fca26827933974cc3f6b6b7800a324/kiwisolver-1.0.1-cp37-none-win_amd64.whl (57kB)
100% |████████████████████████████████| 61kB 123kB/s
Collecting python-dateutil>=2.1 (from matplotlib)
Downloading https://files.pythonhosted.org/packages/74/68/d87d9b36af36f44254a8d512cbfc48369103a3b9e474be9bdfe536abfc45/python_dateutil-2.7.5-py2.py3-none-any.whl (225kB)
100% |████████████████████████████████| 235kB 153kB/s
Requirement already satisfied: numpy>=1.10.0 in d:\systemtools\python37\lib\site-packages (from matplotlib) (1.15.4)
Collecting cycler>=0.10 (from matplotlib)
Downloading https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib)
Downloading https://files.pythonhosted.org/packages/de/0a/001be530836743d8be6c2d85069f46fecf84ac6c18c7f5fb8125ee11d854/pyparsing-2.3.1-py2.py3-none-any.whl (61kB)
100% |████████████████████████████████| 71kB 139kB/s
Requirement already satisfied: setuptools in d:\systemtools\python37\lib\site-packages (from kiwisolver>=1.0.1->matplotlib) (39.0.1)
Requirement already satisfied: six>=1.5 in d:\systemtools\python37\lib\site-packages (from python-dateutil>=2.1->matplotlib) (1.11.0)
Installing collected packages: kiwisolver, python-dateutil, cycler, pyparsing, matplotlib
Successfully installed cycler-0.10.0 kiwisolver-1.0.1 matplotlib-3.0.2 pyparsing-2.3.1 python-dateutil-2.7.5
pip install wordcloud
Collecting wordcloud
Downloading https://files.pythonhosted.org/packages/23/4e/1254d26ce5d36facdcbb5820e7e434328aed68e99938c75c9d4e2fee5efb/wordcloud-1.5.0-cp37-cp37m-win_amd64.whl (153kB)
100% |████████████████████████████████| 163kB 543kB/s
Requirement already satisfied: numpy>=1.6.1 in d:\systemtools\python37\lib\site-packages (from wordcloud) (1.15.4)
Collecting pillow (from wordcloud)
Downloading https://files.pythonhosted.org/packages/20/59/edb6fe64a608afc9fd1faf3470774b4131b4be9d40c496b0c144033e249a/Pillow-5.4.1-cp37-cp37m-win_amd64.whl (2.0MB)
100% |████████████████████████████████| 2.0MB 1.6MB/s
Installing collected packages: pillow, wordcloud
The script wordcloud_cli.exe is installed in 'd:\systemtools\python37\Scripts' which is not on PATH.
Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed pillow-5.4.1 wordcloud-1.5.0
之后是程序
# coding: utf-8 import jieba from scipy.misc import imread # 這是一個處理圖像的函數 from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt
import numpy as np back_color = imread('daxiang.jpg') # 解析該圖片
wc = WordCloud(background_color='white', # 背景顏色 max_words=1000, # 最大詞數 mask=back_color, # 以該參數值作圖繪制詞雲,這個參數不為空時,width和height會被忽略 max_font_size=100, # 顯示字體的最大值 stopwords=STOPWORDS.add('哇卡拉'), # 使用內置的屏蔽詞,再添加 '哇卡拉' font_path="C:/Windows/Fonts/STFANGSO.ttf", # 解決顯示口字型亂碼問題,可進入C:/Windows/Fonts/目錄更換字體
#此目錄下必須要有對應的ttf文件,否則報錯:OSError: cannot open resource
random_state=42, # 為每個詞返回一個PIL顏色 # width=1000, # 圖片的寬 # height=860 #圖片的長 ) # 添加自己的詞庫分詞,比如添加'你知道難道別人不知道'到jieba詞庫后,當你處理的文本中含有這個詞時, # 就會直接將其當作一個詞,而不會得到'知道'或'不知道'這樣的詞 jieba.add_word('你知道難道別人不知道') # 打開詞源的文本文件 text = open('cnword.txt').read() # 該函數的作用就是把屏蔽詞去掉,使用這個函數就不用在WordCloud參數中添加stopwords參數了 # 把你需要屏蔽的詞全部放入一個stopwords文本文件里即可 def stop_words(texts): words_list = [] word_generator = jieba.cut(texts, cut_all=False) # 返回的是一個迭代器 with open('stopwords.txt') as f: str_text = f.read() unicode_text = unicode(str_text, 'utf-8') # 把str格式轉成unicode格式 f.close() # stopwords文本中詞的格式是'一詞一行' for word in word_generator: if word.strip() not in unicode_text: words_list.append(word) return ' '.join(words_list) # 注意是空格 text = stop_words(text) wc.generate(text) # 基於彩色圖像生成相應彩色 image_colors = ImageColorGenerator(back_color) # 顯示圖片 plt.imshow(wc) # 關閉坐標軸 plt.axis('off') # 繪制詞雲 plt.figure() plt.imshow(wc.recolor(color_func=image_colors)) plt.axis('off') # 保存圖片 wc.to_file('xixixi.png')
詞源文件:cnword.txt即上一篇中的地市的名稱
屏蔽詞源:stopwords.txt 隨便寫了幾個不需要展示的城市
咔咔一頓轉換就成了下圖:
最后,授之以魚不如授之以漁!
WordCloud各含義參數如下
font_path : string #字體路徑,需要展現什么字體就把該字體路徑+后綴名寫上,如:font_path = '黑體.ttf' width : int (default=400) #輸出的畫布寬度,默認為400像素 height : int (default=200) #輸出的畫布高度,默認為200像素 prefer_horizontal : float (default=0.90) #詞語水平方向排版出現的頻率,默認 0.9 (所以詞語垂直方向排版出現頻率為 0.1 ) mask : nd-array or None (default=None) #如果參數為空,則使用二維遮罩繪制詞雲。如果 mask 非空,設置的寬高值將被忽略,遮罩形狀被 mask 取代。除全白(#FFFFFF)的部分將不會繪制,其余部分會用於繪制詞雲。如:bg_pic = imread('讀取一張圖片.png'),背景圖片的畫布一定要設置為白色(#FFFFFF),然后顯示的形狀為不是白色的其他顏色。可以用ps工具將自己要顯示的形狀復制到一個純白色的畫布上再保存,就ok了。 scale : float (default=1) #按照比例進行放大畫布,如設置為1.5,則長和寬都是原來畫布的1.5倍 min_font_size : int (default=4) #顯示的最小的字體大小 font_step : int (default=1) #字體步長,如果步長大於1,會加快運算但是可能導致結果出現較大的誤差 max_words : number (default=200) #要顯示的詞的最大個數 stopwords : set of strings or None #設置需要屏蔽的詞,如果為空,則使用內置的STOPWORDS background_color : color value (default=”black”) #背景顏色,如background_color='white',背景顏色為白色 max_font_size : int or None (default=None) #顯示的最大的字體大小 mode : string (default=”RGB”) #當參數為“RGBA”並且background_color不為空時,背景為透明 relative_scaling : float (default=.5) #詞頻和字體大小的關聯性 color_func : callable, default=None #生成新顏色的函數,如果為空,則使用 self.color_func regexp : string or None (optional) #使用正則表達式分隔輸入的文本 collocations : bool, default=True #是否包括兩個詞的搭配 colormap : string or matplotlib colormap, default=”viridis” #給每個單詞隨機分配顏色,若指定color_func,則忽略該方法 random_state : int or None #為每個單詞返回一個PIL顏色 fit_words(frequencies) #根據詞頻生成詞雲 generate(text) #根據文本生成詞雲 generate_from_frequencies(frequencies[, ...]) #根據詞頻生成詞雲 generate_from_text(text) #根據文本生成詞雲 process_text(text) #將長文本分詞並去除屏蔽詞(此處指英語,中文分詞還是需要自己用別的庫先行實現,使用上面的 fit_words(frequencies) ) recolor([random_state, color_func, colormap]) #對現有輸出重新着色。重新上色會比重新生成整個詞雲快很多 to_array() #轉化為 numpy array to_file(filename) #輸出到文件
引用:https://www.cnblogs.com/delav/p/7845539.html
========================================================