文本分類實戰(八)—— Transformer模型


1 大綱概述

  文本分類這個系列將會有十篇左右,包括基於word2vec預訓練的文本分類,與及基於最新的預訓練模型(ELMo,BERT等)的文本分類。總共有以下系列:

  word2vec預訓練詞向量

  textCNN 模型

  charCNN 模型

  Bi-LSTM 模型

  Bi-LSTM + Attention 模型

  RCNN 模型

  Adversarial LSTM 模型

  Transformer 模型

  ELMo 預訓練模型

  BERT 預訓練模型

  jupyter notebook代碼均在textClassifier倉庫中,python代碼在NLP-Project中的text_classfier中。

 

2 數據集

  數據集為IMDB 電影影評,總共有三個數據文件,在/data/rawData目錄下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在進行文本分類時需要有標簽的數據(labeledTrainData),數據預處理如文本分類實戰(一)—— word2vec預訓練詞向量中一樣,預處理后的文件為/data/preprocess/labeledTrain.csv。

 

3 Transformer 模型結構

  Transformer模型來自於論文Attention Is All You Need,關於Transformer具體的介紹見這篇。Transformer模型具體結構如下圖:

  

  Transformer結構有兩種:Encoder和Decoder,在文本分類中只使用到了Encoder,Decoder是生成式模型,主要用於自然語言生成的。

 

4 參數配置

import os
import csv
import time
import datetime
import random
import json

import warnings
from collections import Counter
from math import sqrt

import gensim
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")

 

# 配置參數

class TrainingConfig(object):
    epoches = 10
    evaluateEvery = 100
    checkpointEvery = 100
    learningRate = 0.001
    
    
class ModelConfig(object):
    embeddingSize = 200
    
    filters = 128  # 內層一維卷積核的數量,外層卷積核的數量應該等於embeddingSize,因為要確保每個layer后的輸出維度和輸入維度是一致的。
    numHeads = 8  # Attention 的頭數
    numBlocks = 1  # 設置transformer block的數量
    epsilon = 1e-8  # LayerNorm 層中的最小除數
    keepProp = 0.9  # multi head attention 中的dropout
    
    dropoutKeepProb = 0.5 # 全連接層的dropout
    l2RegLambda = 0.0
    
    
class Config(object):
    sequenceLength = 200  # 取了所有序列長度的均值
    batchSize = 128
    
    dataSource = "../data/preProcess/labeledTrain.csv"
    
    stopWordSource = "../data/english"
    
    numClasses = 1  # 二分類設置為1,多分類設置為類別的數目
    
    rate = 0.8  # 訓練集的比例
    
    training = TrainingConfig()
    
    model = ModelConfig()

    
# 實例化配置參數對象
config = Config()

 

5 生成訓練數據

  1)將數據加載進來,將句子分割成詞表示,並去除低頻詞和停用詞。

  2)將詞映射成索引表示,構建詞匯-索引映射表,並保存成json的數據格式,之后做inference時可以用到。(注意,有的詞可能不在word2vec的預訓練詞向量中,這種詞直接用UNK表示)

  3)從預訓練的詞向量模型中讀取出詞向量,作為初始化值輸入到模型中。

  4)將數據集分割成訓練集和測試集

# 數據預處理的類,生成訓練集和測試集

class Dataset(object):
    def __init__(self, config):
        self.config = config
        self._dataSource = config.dataSource
        self._stopWordSource = config.stopWordSource  
        
        self._sequenceLength = config.sequenceLength  # 每條輸入的序列處理為定長
        self._embeddingSize = config.model.embeddingSize
        self._batchSize = config.batchSize
        self._rate = config.rate
        
        self._stopWordDict = {}
        
        self.trainReviews = []
        self.trainLabels = []
        
        self.evalReviews = []
        self.evalLabels = []
        
        self.wordEmbedding =None
        
        self.labelList = []
        
    def _readData(self, filePath):
        """
        從csv文件中讀取數據集
        """
        
        df = pd.read_csv(filePath)
        
        if self.config.numClasses == 1:
            labels = df["sentiment"].tolist()
        elif self.config.numClasses > 1:
            labels = df["rate"].tolist()
            
        review = df["review"].tolist()
        reviews = [line.strip().split() for line in review]

        return reviews, labels
    
    def _labelToIndex(self, labels, label2idx):
        """
        將標簽轉換成索引表示
        """
        labelIds = [label2idx[label] for label in labels]
        return labelIds
    
    def _wordToIndex(self, reviews, word2idx):
        """
        將詞轉換成索引
        """
        reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
        return reviewIds
        
    def _genTrainEvalData(self, x, y, word2idx, rate):
        """
        生成訓練集和驗證集
        """
        reviews = []
        for review in x:
            if len(review) >= self._sequenceLength:
                reviews.append(review[:self._sequenceLength])
            else:
                reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
            
        trainIndex = int(len(x) * rate)
        
        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
        trainLabels = np.array(y[:trainIndex], dtype="float32")
        
        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
        evalLabels = np.array(y[trainIndex:], dtype="float32")

        return trainReviews, trainLabels, evalReviews, evalLabels
        
    def _genVocabulary(self, reviews, labels):
        """
        生成詞向量和詞匯-索引映射字典,可以用全數據集
        """
        
        allWords = [word for review in reviews for word in review]
        
        # 去掉停用詞
        subWords = [word for word in allWords if word not in self.stopWordDict]
        
        wordCount = Counter(subWords)  # 統計詞頻
        sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True)
        
        # 去除低頻詞
        words = [item[0] for item in sortWordCount if item[1] >= 5]
        
        vocab, wordEmbedding = self._getWordEmbedding(words)
        self.wordEmbedding = wordEmbedding
        
        word2idx = dict(zip(vocab, list(range(len(vocab)))))
        
        uniqueLabel = list(set(labels))
        label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
        self.labelList = list(range(len(uniqueLabel)))
        
        # 將詞匯-索引映射表保存為json數據,之后做inference時直接加載來處理數據
        with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
            json.dump(word2idx, f)
        
        with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
            json.dump(label2idx, f)
        
        return word2idx, label2idx
            
    def _getWordEmbedding(self, words):
        """
        按照我們的數據集中的單詞取出預訓練好的word2vec中的詞向量
        """
        
        wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
        vocab = []
        wordEmbedding = []
        
        # 添加 "pad" 和 "UNK", 
        vocab.append("PAD")
        vocab.append("UNK")
        wordEmbedding.append(np.zeros(self._embeddingSize))
        wordEmbedding.append(np.random.randn(self._embeddingSize))
        
        for word in words:
            try:
                vector = wordVec.wv[word]
                vocab.append(word)
                wordEmbedding.append(vector)
            except:
                print(word + "不存在於詞向量中")
                
        return vocab, np.array(wordEmbedding)
    
    def _readStopWord(self, stopWordPath):
        """
        讀取停用詞
        """
        
        with open(stopWordPath, "r") as f:
            stopWords = f.read()
            stopWordList = stopWords.splitlines()
            # 將停用詞用列表的形式生成,之后查找停用詞時會比較快
            self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))
            
    def dataGen(self):
        """
        初始化訓練集和驗證集
        """
        
        # 初始化停用詞
        self._readStopWord(self._stopWordSource)
        
        # 初始化數據集
        reviews, labels = self._readData(self._dataSource)
        
        # 初始化詞匯-索引映射表和詞向量矩陣
        word2idx, label2idx = self._genVocabulary(reviews, labels)
        
        # 將標簽和句子數值化
        labelIds = self._labelToIndex(labels, label2idx)
        reviewIds = self._wordToIndex(reviews, word2idx)
        
        # 初始化訓練集和測試集
        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx, self._rate)
        self.trainReviews = trainReviews
        self.trainLabels = trainLabels
        
        self.evalReviews = evalReviews
        self.evalLabels = evalLabels
        
        
data = Dataset(config)
data.dataGen()

 

6 生成batch數據集

  采用生成器的形式向模型輸入batch數據集,(生成器可以避免將所有的數據加入到內存中)

# 輸出batch數據集

def nextBatch(x, y, batchSize):
        """
        生成batch數據集,用生成器的方式輸出
        """
    
        perm = np.arange(len(x))
        np.random.shuffle(perm)
        x = x[perm]
        y = y[perm]
        
        numBatches = len(x) // batchSize

        for i in range(numBatches):
            start = i * batchSize
            end = start + batchSize
            batchX = np.array(x[start: end], dtype="int64")
            batchY = np.array(y[start: end], dtype="float32")
            
            yield batchX, batchY

 

7 Transformer模型

  關於transformer模型的一些使用心得:

  1)我在這里選擇固定的one-hot的position embedding比論文中提出的利用正弦余弦函數生成的position embedding的效果要好,可能的原因是論文中提出的position embedding是作為可訓練的值傳入的,

    這樣就增加了模型的復雜度,在小數據集(IMDB訓練集大小:20000)上導致性能有所下降。

  2)mask可能不需要,添加mask和去除mask對結果基本沒啥影響,也許在其他的任務或者數據集上有作用,但論文也並沒有提出一定要在encoder結構中加入mask,mask更多的是用在decoder。

  3)transformer的層數,transformer的層數可以根據自己的數據集大小調整,在小數據集上基本上一層就夠了。

  4)在subLayers上加dropout正則化,主要是在multi-head attention層加,因為feed forward是用卷積實現的,不加dropout應該沒關系,當然如果feed forward用全連接層實現,那也加上dropout。

  5)在小數據集上transformer的效果並不一定比Bi-LSTM + Attention好,在IMDB上效果就更差。

 

# 生成位置嵌入
def fixedPositionEmbedding(batchSize, sequenceLen):
    embeddedPosition = []
    for batch in range(batchSize):
        x = []
        for step in range(sequenceLen):
            a = np.zeros(sequenceLen)
            a[step] = 1
            x.append(a)
        embeddedPosition.append(x)
    
    return np.array(embeddedPosition, dtype="float32")


# 模型構建

class Transformer(object):
    """
    Transformer Encoder 用於文本分類
    """
    def __init__(self, config, wordEmbedding):

        # 定義模型的輸入
        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
        self.inputY = tf.placeholder(tf.int32, [None], name="inputY")
        
        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
        self.embeddedPosition = tf.placeholder(tf.float32, [None, config.sequenceLength, config.sequenceLength], name="embeddedPosition")
        
        self.config = config
        
        # 定義l2損失
        l2Loss = tf.constant(0.0)
        
        # 詞嵌入層, 位置向量的定義方式有兩種:一是直接用固定的one-hot的形式傳入,然后和詞向量拼接,在當前的數據集上表現效果更好。另一種
        # 就是按照論文中的方法實現,這樣的效果反而更差,可能是增大了模型的復雜度,在小數據集上表現不佳。
        
        with tf.name_scope("embedding"):

            # 利用預訓練的詞向量初始化詞嵌入矩陣
            self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
            # 利用詞嵌入矩陣將輸入的數據中的詞轉換成詞向量,維度[batch_size, sequence_length, embedding_size]
            self.embedded = tf.nn.embedding_lookup(self.W, self.inputX)
            self.embeddedWords = tf.concat([self.embedded, self.embeddedPosition], -1)

        with tf.name_scope("transformer"):
            for i in range(config.model.numBlocks):
                with tf.name_scope("transformer-{}".format(i + 1)):
            
                    # 維度[batch_size, sequence_length, embedding_size]
                    multiHeadAtt = self._multiheadAttention(rawKeys=self.inputX, queries=self.embeddedWords,
                                                            keys=self.embeddedWords)
                    # 維度[batch_size, sequence_length, embedding_size]
                    self.embeddedWords = self._feedForward(multiHeadAtt, 
                                                           [config.model.filters, config.model.embeddingSize + config.sequenceLength])
                
            outputs = tf.reshape(self.embeddedWords, [-1, config.sequenceLength * (config.model.embeddingSize + config.sequenceLength)])

        outputSize = outputs.get_shape()[-1].value

#         with tf.name_scope("wordEmbedding"):
#             self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec"), name="W")
#             self.wordEmbedded = tf.nn.embedding_lookup(self.W, self.inputX)
        
#         with tf.name_scope("positionEmbedding"):
#             print(self.wordEmbedded)
#             self.positionEmbedded = self._positionEmbedding()
            
#         self.embeddedWords = self.wordEmbedded + self.positionEmbedded
            
#         with tf.name_scope("transformer"):
#             for i in range(config.model.numBlocks):
#                 with tf.name_scope("transformer-{}".format(i + 1)):
            
#                     # 維度[batch_size, sequence_length, embedding_size]
#                     multiHeadAtt = self._multiheadAttention(rawKeys=self.wordEmbedded, queries=self.embeddedWords,
#                                                             keys=self.embeddedWords)
#                     # 維度[batch_size, sequence_length, embedding_size]
#                     self.embeddedWords = self._feedForward(multiHeadAtt, [config.model.filters, config.model.embeddingSize])
                
#             outputs = tf.reshape(self.embeddedWords, [-1, config.sequenceLength * (config.model.embeddingSize)])

#         outputSize = outputs.get_shape()[-1].value
        
        with tf.name_scope("dropout"):
            outputs = tf.nn.dropout(outputs, keep_prob=self.dropoutKeepProb)
    
        # 全連接層的輸出
        with tf.name_scope("output"):
            outputW = tf.get_variable(
                "outputW",
                shape=[outputSize, config.numClasses],
                initializer=tf.contrib.layers.xavier_initializer())
            
            outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
            l2Loss += tf.nn.l2_loss(outputW)
            l2Loss += tf.nn.l2_loss(outputB)
            self.logits = tf.nn.xw_plus_b(outputs, outputW, outputB, name="logits")
            
            if config.numClasses == 1:
                self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
            elif config.numClasses > 1:
                self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
        
        # 計算二元交叉熵損失
        with tf.name_scope("loss"):
            
            if config.numClasses == 1:
                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]), 
                                                                                                    dtype=tf.float32))
            elif config.numClasses > 1:
                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
                
            self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
            
    def _layerNormalization(self, inputs, scope="layerNorm"):
        # LayerNorm層和BN層有所不同
        epsilon = self.config.model.epsilon

        inputsShape = inputs.get_shape() # [batch_size, sequence_length, embedding_size]

        paramsShape = inputsShape[-1:]

        # LayerNorm是在最后的維度上計算輸入的數據的均值和方差,BN層是考慮所有維度的
        # mean, variance的維度都是[batch_size, sequence_len, 1]
        mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)

        beta = tf.Variable(tf.zeros(paramsShape))

        gamma = tf.Variable(tf.ones(paramsShape))
        normalized = (inputs - mean) / ((variance + epsilon) ** .5)
        
        outputs = gamma * normalized + beta

        return outputs
            
    def _multiheadAttention(self, rawKeys, queries, keys, numUnits=None, causality=False, scope="multiheadAttention"):
        # rawKeys 的作用是為了計算mask時用的,因為keys是加上了position embedding的,其中不存在padding為0的值
        
        numHeads = self.config.model.numHeads
        keepProp = self.config.model.keepProp
        
        if numUnits is None:  # 若是沒傳入值,直接去輸入數據的最后一維,即embedding size.
            numUnits = queries.get_shape().as_list()[-1]

        # tf.layers.dense可以做多維tensor數據的非線性映射,在計算self-Attention時,一定要對這三個值進行非線性映射,
        # 其實這一步就是論文中Multi-Head Attention中的對分割后的數據進行權重映射的步驟,我們在這里先映射后分割,原則上是一樣的。
        # Q, K, V的維度都是[batch_size, sequence_length, embedding_size]
        Q = tf.layers.dense(queries, numUnits, activation=tf.nn.relu)
        K = tf.layers.dense(keys, numUnits, activation=tf.nn.relu)
        V = tf.layers.dense(keys, numUnits, activation=tf.nn.relu)

        # 將數據按最后一維分割成num_heads個, 然后按照第一維拼接
        # Q, K, V 的維度都是[batch_size * numHeads, sequence_length, embedding_size/numHeads]
        Q_ = tf.concat(tf.split(Q, numHeads, axis=-1), axis=0) 
        K_ = tf.concat(tf.split(K, numHeads, axis=-1), axis=0) 
        V_ = tf.concat(tf.split(V, numHeads, axis=-1), axis=0)

        # 計算keys和queries之間的點積,維度[batch_size * numHeads, queries_len, key_len], 后兩維是queries和keys的序列長度
        similary = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1]))

        # 對計算的點積進行縮放處理,除以向量長度的根號值
        scaledSimilary = similary / (K_.get_shape().as_list()[-1] ** 0.5)

        # 在我們輸入的序列中會存在padding這個樣的填充詞,這種詞應該對最終的結果是毫無幫助的,原則上說當padding都是輸入0時,
        # 計算出來的權重應該也是0,但是在transformer中引入了位置向量,當和位置向量相加之后,其值就不為0了,因此在添加位置向量
        # 之前,我們需要將其mask為0。雖然在queries中也存在這樣的填充詞,但原則上模型的結果之和輸入有關,而且在self-Attention中
        # queryies = keys,因此只要一方為0,計算出的權重就為0。
        # 具體關於key mask的介紹可以看看這里: https://github.com/Kyubyong/transformer/issues/3

        # 利用tf,tile進行張量擴張, 維度[batch_size * numHeads, keys_len] keys_len = keys 的序列長度
        keyMasks = tf.tile(rawKeys, [numHeads, 1]) 

        # 增加一個維度,並進行擴張,得到維度[batch_size * numHeads, queries_len, keys_len]
        keyMasks = tf.tile(tf.expand_dims(keyMasks, 1), [1, tf.shape(queries)[1], 1])

        # tf.ones_like生成元素全為1,維度和scaledSimilary相同的tensor, 然后得到負無窮大的值
        paddings = tf.ones_like(scaledSimilary) * (-2 ** (32 + 1))

        # tf.where(condition, x, y),condition中的元素為bool值,其中對應的True用x中的元素替換,對應的False用y中的元素替換
        # 因此condition,x,y的維度是一樣的。下面就是keyMasks中的值為0就用paddings中的值替換
        maskedSimilary = tf.where(tf.equal(keyMasks, 0), paddings, scaledSimilary) # 維度[batch_size * numHeads, queries_len, key_len]

        # 在計算當前的詞時,只考慮上文,不考慮下文,出現在Transformer Decoder中。在文本分類時,可以只用Transformer Encoder。
        # Decoder是生成模型,主要用在語言生成中
        if causality:
            diagVals = tf.ones_like(maskedSimilary[0, :, :])  # [queries_len, keys_len]
            tril = tf.contrib.linalg.LinearOperatorTriL(diagVals).to_dense()  # [queries_len, keys_len]
            masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(maskedSimilary)[0], 1, 1])  # [batch_size * numHeads, queries_len, keys_len]

            paddings = tf.ones_like(masks) * (-2 ** (32 + 1))
            maskedSimilary = tf.where(tf.equal(masks, 0), paddings, maskedSimilary)  # [batch_size * numHeads, queries_len, keys_len]

        # 通過softmax計算權重系數,維度 [batch_size * numHeads, queries_len, keys_len]
        weights = tf.nn.softmax(maskedSimilary)

        # 加權和得到輸出值, 維度[batch_size * numHeads, sequence_length, embedding_size/numHeads]
        outputs = tf.matmul(weights, V_)

        # 將多頭Attention計算的得到的輸出重組成最初的維度[batch_size, sequence_length, embedding_size]
        outputs = tf.concat(tf.split(outputs, numHeads, axis=0), axis=2)
        
        outputs = tf.nn.dropout(outputs, keep_prob=keepProp)

        # 對每個subLayers建立殘差連接,即H(x) = F(x) + x
        outputs += queries
        # normalization 層
        outputs = self._layerNormalization(outputs)
        return outputs

    def _feedForward(self, inputs, filters, scope="multiheadAttention"):
        # 在這里的前向傳播采用卷積神經網絡
        
        # 內層
        params = {"inputs": inputs, "filters": filters[0], "kernel_size": 1,
                  "activation": tf.nn.relu, "use_bias": True}
        outputs = tf.layers.conv1d(**params)

        # 外層
        params = {"inputs": outputs, "filters": filters[1], "kernel_size": 1,
                  "activation": None, "use_bias": True}

        # 這里用到了一維卷積,實際上卷積核尺寸還是二維的,只是只需要指定高度,寬度和embedding size的尺寸一致
        # 維度[batch_size, sequence_length, embedding_size]
        outputs = tf.layers.conv1d(**params)

        # 殘差連接
        outputs += inputs

        # 歸一化處理
        outputs = self._layerNormalization(outputs)

        return outputs
    
    def _positionEmbedding(self, scope="positionEmbedding"):
        # 生成可訓練的位置向量
        batchSize = self.config.batchSize
        sequenceLen = self.config.sequenceLength
        embeddingSize = self.config.model.embeddingSize
        
        # 生成位置的索引,並擴張到batch中所有的樣本上
        positionIndex = tf.tile(tf.expand_dims(tf.range(sequenceLen), 0), [batchSize, 1])

        # 根據正弦和余弦函數來獲得每個位置上的embedding的第一部分
        positionEmbedding = np.array([[pos / np.power(10000, (i-i%2) / embeddingSize) for i in range(embeddingSize)] 
                                      for pos in range(sequenceLen)])

        # 然后根據奇偶性分別用sin和cos函數來包裝
        positionEmbedding[:, 0::2] = np.sin(positionEmbedding[:, 0::2])
        positionEmbedding[:, 1::2] = np.cos(positionEmbedding[:, 1::2])

        # 將positionEmbedding轉換成tensor的格式
        positionEmbedding_ = tf.cast(positionEmbedding, dtype=tf.float32)

        # 得到三維的矩陣[batchSize, sequenceLen, embeddingSize]
        positionEmbedded = tf.nn.embedding_lookup(positionEmbedding_, positionIndex)

        return positionEmbedded
            

 

8 定義計算metrics的函數

 

"""
定義各類性能指標
"""

def mean(item: list) -> float:
    """
    計算列表中元素的平均值
    :param item: 列表對象
    :return:
    """
    res = sum(item) / len(item) if len(item) > 0 else 0
    return res


def accuracy(pred_y, true_y):
    """
    計算二類和多類的准確率
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]
    corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == true_y[i]:
            corr += 1
    acc = corr / len(pred_y) if len(pred_y) > 0 else 0
    return acc


def binary_precision(pred_y, true_y, positive=1):
    """
    二類的精確率計算
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    pred_corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == positive:
            pred_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    prec = corr / pred_corr if pred_corr > 0 else 0
    return prec


def binary_recall(pred_y, true_y, positive=1):
    """
    二類的召回率
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    true_corr = 0
    for i in range(len(pred_y)):
        if true_y[i] == positive:
            true_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    rec = corr / true_corr if true_corr > 0 else 0
    return rec


def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
    """
    二類的f beta值
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param beta: beta值
    :param positive: 正例的索引表示
    :return:
    """
    precision = binary_precision(pred_y, true_y, positive)
    recall = binary_recall(pred_y, true_y, positive)
    try:
        f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
    except:
        f_b = 0
    return f_b


def multi_precision(pred_y, true_y, labels):
    """
    多類的精確率
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param labels: 標簽列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    precisions = [binary_precision(pred_y, true_y, label) for label in labels]
    prec = mean(precisions)
    return prec


def multi_recall(pred_y, true_y, labels):
    """
    多類的召回率
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param labels: 標簽列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    recalls = [binary_recall(pred_y, true_y, label) for label in labels]
    rec = mean(recalls)
    return rec


def multi_f_beta(pred_y, true_y, labels, beta=1.0):
    """
    多類的f beta值
    :param pred_y: 預測結果
    :param true_y: 真實結果
    :param labels: 標簽列表
    :param beta: beta值
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
    f_beta = mean(f_betas)
    return f_beta


def get_binary_metrics(pred_y, true_y, f_beta=1.0):
    """
    得到二分類的性能指標
    :param pred_y:
    :param true_y:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = binary_recall(pred_y, true_y)
    precision = binary_precision(pred_y, true_y)
    f_beta = binary_f_beta(pred_y, true_y, f_beta)
    return acc, recall, precision, f_beta


def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
    """
    得到多分類的性能指標
    :param pred_y:
    :param true_y:
    :param labels:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = multi_recall(pred_y, true_y, labels)
    precision = multi_precision(pred_y, true_y, labels)
    f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
    return acc, recall, precision, f_beta

 

 

9 訓練模型

  在訓練時,我們定義了tensorBoard的輸出,並定義了兩種模型保存的方法。 

# 訓練模型

# 生成訓練集和驗證集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels

wordEmbedding = data.wordEmbedding
labelList = data.labelList

embeddedPosition = fixedPositionEmbedding(config.batchSize, config.sequenceLength)

# 定義計算圖
with tf.Graph().as_default():

    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    session_conf.gpu_options.allow_growth=True
    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率  

    sess = tf.Session(config=session_conf)
    
    # 定義會話
    with sess.as_default():
        transformer = Transformer(config, wordEmbedding)
        
        globalStep = tf.Variable(0, name="globalStep", trainable=False)
        # 定義優化函數,傳入學習速率參數
        optimizer = tf.train.AdamOptimizer(config.training.learningRate)
        # 計算梯度,得到梯度和變量
        gradsAndVars = optimizer.compute_gradients(transformer.loss)
        # 將梯度應用到變量下,生成訓練器
        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
        
        # 用summary繪制tensorBoard
        gradSummaries = []
        for g, v in gradsAndVars:
            if g is not None:
                tf.summary.histogram("{}/grad/hist".format(v.name), g)
                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
        
        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
        print("Writing to {}\n".format(outDir))
        
        lossSummary = tf.summary.scalar("loss", transformer.loss)
        summaryOp = tf.summary.merge_all()
        
        trainSummaryDir = os.path.join(outDir, "train")
        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
        
        evalSummaryDir = os.path.join(outDir, "eval")
        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
        
        
        # 初始化所有變量
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
        
        # 保存模型的一種方式,保存為pb文件
        savedModelPath = "../model/transformer/savedModel"
        if os.path.exists(savedModelPath):
            os.rmdir(savedModelPath)
        builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)
            
        sess.run(tf.global_variables_initializer())

        def trainStep(batchX, batchY):
            """
            訓練函數
            """   
            feed_dict = {
              transformer.inputX: batchX,
              transformer.inputY: batchY,
              transformer.dropoutKeepProb: config.model.dropoutKeepProb,
              transformer.embeddedPosition: embeddedPosition
            }
            _, summary, step, loss, predictions = sess.run(
                [trainOp, summaryOp, globalStep, transformer.loss, transformer.predictions],
                feed_dict)
            
            if config.numClasses == 1:
                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)

                
            elif config.numClasses > 1:
                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
                                                              labels=labelList)
                
            trainSummaryWriter.add_summary(summary, step)
            
            return loss, acc, prec, recall, f_beta

        def devStep(batchX, batchY):
            """
            驗證函數
            """
            feed_dict = {
              transformer.inputX: batchX,
              transformer.inputY: batchY,
              transformer.dropoutKeepProb: 1.0,
              transformer.embeddedPosition: embeddedPosition
            }
            summary, step, loss, predictions = sess.run(
                [summaryOp, globalStep, transformer.loss, transformer.predictions],
                feed_dict)
            
            if config.numClasses == 1:
                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)

                
            elif config.numClasses > 1:
                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
                                                              labels=labelList)
                
            trainSummaryWriter.add_summary(summary, step)
            
            return loss, acc, prec, recall, f_beta
        
        for i in range(config.training.epoches):
            # 訓練模型
            print("start training model")
            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
                loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])
                
                currentStep = tf.train.global_step(sess, globalStep) 
                print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
                    currentStep, loss, acc, recall, prec, f_beta))
                if currentStep % config.training.evaluateEvery == 0:
                    print("\nEvaluation:")
                    
                    losses = []
                    accs = []
                    f_betas = []
                    precisions = []
                    recalls = []
                    
                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
                        loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
                        losses.append(loss)
                        accs.append(acc)
                        f_betas.append(f_beta)
                        precisions.append(precision)
                        recalls.append(recall)
                        
                    time_str = datetime.datetime.now().isoformat()
                    print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses), 
                                                                                                       mean(accs), mean(precisions),
                                                                                                       mean(recalls), mean(f_betas)))
                    
                if currentStep % config.training.checkpointEvery == 0:
                    # 保存模型的另一種方法,保存checkpoint文件
                    path = saver.save(sess, "../model/Transformer/model/my-model", global_step=currentStep)
                    print("Saved model checkpoint to {}\n".format(path))
                    
        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(transformer.inputX),
                  "keepProb": tf.saved_model.utils.build_tensor_info(transformer.dropoutKeepProb)}

        outputs = {"predictions": tf.saved_model.utils.build_tensor_info(transformer.predictions)}

        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                            signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)

        builder.save()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM