tensorboard 可視化可以用一下幾個步驟實現:
1.在腳本代碼當中通過tensorborad()函數返回各個想要可視化的參數以及保存事件文件的目錄(在對模型進行優化之后)。
2.在運行完文件之后在后端進入腳本程序所在目錄,並輸入 tensorboard --logs = 'logs'。(這里logs指的是在1中指定的保存事件的目錄)
3.后端會返回查看可視化結果的地址,把地址復制進瀏覽器即可查看。
下面用一個簡單的實例展示一下具體過程。
代碼部分如下:
1 import keras 2 from keras.datasets import mnist 3 from keras.models import Sequential 4 from keras.layers import Dense, Dropout, Flatten 5 from keras.layers import Conv2D, MaxPooling2D 6 from keras import backend as K 7 # 引入Tensorboard 8 from keras.callbacks import TensorBoard 9 from keras.utils import plot_model 10 11 (x_train,y_train),(x_test,y_test) = mnist.load_data() # out: np.ndarray 12 13 x_train = x_train.reshape(-1,28,28,1) 14 x_test = x_test.reshape(-1,28,28,1) 15 input_shape = (28,28,1) 16 17 x_train = x_train/255 18 x_test = x_test/255 19 y_train = keras.utils.to_categorical(y_train,10) 20 y_test = keras.utils.to_categorical(y_test,10) 21 22 model = Sequential() 23 model.add(Conv2D(filters = 32,kernel_size=(3,3), 24 activation='relu',input_shape = input_shape,name='conv1')) 25 model.add(Conv2D(64,(3,3),activation='relu',name='conv2')) 26 model.add(MaxPooling2D(pool_size=(2,2),name='pool2')) 27 model.add(Dropout(0.25,name='dropout1')) 28 model.add(Flatten(name='flat1')) 29 model.add(Dense(128,activation='relu')) 30 model.add(Dropout(0.5,name='dropout2')) 31 model.add(Dense(10,activation='softmax',name='output')) 32 33 plot_model(model,to_file='model.png') 34 35 model.compile(loss = keras.losses.categorical_crossentropy, 36 optimizer = keras.optimizers.Adadelta(), 37 metrics=['accuracy']) 38 39 #調出要可視化的內容 40 tb = TensorBoard(log_dir='./logs', # log 目錄 41 histogram_freq=1, # 按照何等頻率(epoch)來計算直方圖,0為不計算 42 batch_size=32, # 用多大量的數據計算直方圖 43 write_graph=True, # 是否存儲網絡結構圖 44 write_grads=False, # 是否可視化梯度直方圖 45 write_images=False,# 是否可視化參數 46 embeddings_freq=0, 47 embeddings_layer_names=None, 48 embeddings_metadata=None) 49 50 #放進列表 51 callbacks = [tb] 52 53 model.fit(x_train,y_train,batch_size=64,epochs=2 54 ,verbose=1,validation_data=(x_test,y_test), 55 callbacks=callbacks)
在運行完上述代碼之后在后端進入代碼所在目錄,並輸入tensorboard --logdir = 'logs'
通常會返回如下地址:
http://username.loacl:6006
表明可視化結果已經返回到本地主機:6006 , 所以直接在瀏覽器地址欄里輸入127.0.0.1:6006即可查看可視化結果
參數目錄
可以分別點開查看