論文閱讀-(CVPR 2017) Kernel Pooling for Convolutional Neural Networks


在這篇論文中,作者提出了一種更加通用的池化框架,以核函數的形式捕捉特征之間的高階信息。同時也證明了使用無參數化的緊致清晰特征映射,以指定階形式逼近核函數,例如高斯核函數。本文提出的核函數池化可以和CNN網絡聯合優化。

Network Structure

Overview

Kernel Pooling Method

The illustration of the tensor product

A summary of pooling strategies

Experiment Evaluations


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM