Elasticsearch實踐(二):搜索


本文以 Elasticsearch 6.2.4為例。

經過前面的基礎入門,我們對ES的基本操作也會了。現在來學習ES最強大的部分:全文檢索。

准備工作

批量導入數據

先需要准備點數據,然后導入:

wget https://raw.githubusercontent.com/elastic/elasticsearch/master/docs/src/test/resources/accounts.json

curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/account/_bulk" --data-binary "@accounts.json"

這樣我們就導入了1000條數據到ES。

注意:accounts.json每行必須以\n換行。如果提示The bulk request must be terminated by a newline [\n],請檢查最后一行是否以\n換行。

index是bank。我們可以查看現在有哪些index:

curl "localhost:9200/_cat/indices?format=json&pretty"

結果:

[
  {
    "health" : "yellow",
    "status" : "open",
    "index" : "bank",
    "uuid" : "MDxR02uESgKSynX6k8B-og",
    "pri" : "5",
    "rep" : "1",
    "docs.count" : "1000",
    "docs.deleted" : "0",
    "store.size" : "474.6kb",
    "pri.store.size" : "474.6kb"
  }
]

使用kibana可視化數據

該小節是可選的,如果不感興趣,可以跳過。

該小節要求你已經搭建好了ElasticSearch + Kibana。

打開kibana web地址:http://127.0.0.1:5601,依次打開:Management
-> Kibana -> Index Patterns ,選擇Create Index Pattern
a. Index pattern 輸入:bank
b. 點擊Create。

然后打開Discover,選擇 bank 就能看到剛才導入的數據了。

我們在可視化界面里檢索數據:

是不是很酷!

接下來我們使用API來實現檢索。

查詢

URI檢索

uri檢索是通過提供請求參數純粹使用URI來執行搜索請求。

GET /bank/_search?q=Virginia&pretty
GET /bank/_search?q=firstname:Virginia

curl:

curl -XGET "localhost:9200/bank/_search?q=Virginia&pretty"
curl -XGET "localhost:9200/bank/_search?q=firstname:Virginia&pretty"

解釋:檢索關鍵字為"Virginia"的結果。結果示例:

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 4.631368,
    "hits": [
      {
        "_index": "bank",
        "_type": "account",
        "_id": "298",
        "_score": 4.631368,
        "_source": {
          "account_number": 298,
          "balance": 34334,
          "firstname": "Bullock",
          "lastname": "Marsh",
          "age": 20,
          "gender": "M",
          "address": "589 Virginia Place",
          "employer": "Renovize",
          "email": "bullockmarsh@renovize.com",
          "city": "Coinjock",
          "state": "UT"
        }
      },
      {
        "_index": "bank",
        "_type": "account",
        "_id": "25",
        "_score": 4.6146765,
        "_source": {
          "account_number": 25,
          "balance": 40540,
          "firstname": "Virginia",
          "lastname": "Ayala",
          "age": 39,
          "gender": "F",
          "address": "171 Putnam Avenue",
          "employer": "Filodyne",
          "email": "virginiaayala@filodyne.com",
          "city": "Nicholson",
          "state": "PA"
        }
      }
    ]
  }
}

返回字段含義:

  • took – Elasticsearch執行搜索的時間(以毫秒為單位)
  • timed_out – 搜索是否超時
  • _shards – 搜索了多少個分片,以及搜索成功/失敗分片的計數
  • hits – 搜索結果,是個對象
  • hits.total – 符合我們搜索條件的文檔總數
  • hits.hits – 實際的搜索結果數組(默認為前10個文檔)
  • hits.sort - 對結果進行排序(如果按score排序則沒有該字段)
  • hits._score、max_score - 暫時忽略這些字段

參數:

  • q 查詢字符串(映射到query_string查詢)
  • df 在查詢中未定義字段前綴時使用的默認字段。
  • analyzer 分析查詢字符串時要使用的分析器名稱。
  • sort 排序。可以是fieldNamefieldName:asc/ 的形式fieldName:descfieldName可以是文檔中的實際字段,也可以是特殊_score名稱,表示基於分數的排序。可以有幾個sort參數(順序很重要)。
  • timeout 搜索超時。默認為無超時。
  • from 從命中的索引開始返回。默認為0。
  • size 要返回的點擊次數。默認為10。
  • default_operator 要使用的默認運算符可以是AND或 OR。默認為OR。

詳見: https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-uri-request.html

示例:

GET /bank/_search?q=*&sort=account_number:asc&pretty

解釋:所有結果通過account_number字段升序排列。默認只返回前10條。

下面的查詢與上面的含義一致:

GET /bank/_search
{
  "query": {
        "multi_match" : {
            "query" : "Virginia",
            "fields" : ["_all"]
        }
    }
}

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" }
  ]
}

通常我們會采用傳JSON方式查詢。Elasticsearch提供了一種JSON樣式的特定於域的語言,可用於執行查詢。這被稱為查詢DSL。

注意:上述的查詢里面我們僅指定了index,並沒有指定type,那么ES將不會區分type。如果想區分,請在URI后面追加type。示例:GET /bank/account/_search

match查詢

GET /bank/_search
{
    "query" : {
        "match" : { "address" : "Avenue" }
    }
}

curl:

curl -XGET -H "Content-Type: application/json" "localhost:9200/bank/_search?pretty" -d '{"query":{"match":{"address":"Avenue"}}}'

上述查詢返回結果是address含有Avenue的結果。

term查詢

GET /bank/_search
{
    "query" : {
        "term" : { "address" : "Avenue" }
    }
}

curl:

curl -XGET -H "Content-Type: application/json" "localhost:9200/bank/_search?pretty" -d '{"query":{"term":{"address":"Avenue"}}}'

上述查詢返回結果是address等於Avenue的結果。

注:如果一個字段既需要分詞搜索,又需要精准匹配,最好是一開始設置mapping的時候就設置正確。例如:通過增加.keyword字段來支持精准匹配:

{
    "type": "text",
    "fields": {
        "keyword": {
            "type": "keyword",
            "ignore_above": 256
        }
    }
}

這樣相當於有addressaddress.keyword兩個字段。這個后面mapping章節再講解。

分頁(from/size)

分頁使用關鍵字from、size,分別表示偏移量、分頁大小。

GET /bank/_search
{
  "query": { "match_all": {} },
  "from": 0,
  "size": 2
}

from默認是0,size默認是10。

注意:ES的from、size分頁不是真正的分頁,稱之為淺分頁。from+ size不能超過index.max_result_window 默認為10,000 的索引設置。有關 更有效的深度滾動方法,請參閱 ScrollSearch After API

排序(sort)

字段排序關鍵字是sort。支持升序(asc)、降序(desc)。默認是對_score字段進行排序。

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" }
  ],
  "from":0,
  "size":10
}

多個字段排序:

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" },
    { "_score": "asc" }
  ],
  "from":0,
  "size":10
}

先按照account_number排序,再按照_score排序。

按腳本排序

允許基於自定義腳本進行排序,這是一個示例:

GET bank/account/_search
{
    "query": { "range": { "age":  {"gt": 20} }},
    "sort" : {
        "_script" : {
            "type" : "number",
            "script" : {
                "lang": "painless",
                "source": "doc['account_number'].value * params.factor",
                "params" : {
                    "factor" : 1.1
                }
            },
            "order" : "asc"
        }
    }
}

上述查詢是使用腳本進行排序:按 account_number*1.1 的結果進行升序。其中lang指的是使用的腳本語言類型為painlesspainless支持Math.log函數。

上述例子僅僅是演示使用方法,沒有實際含義。

過濾字段

默認情況下,ES返回所有字段。這被稱為源(_source搜索命中中的字段)。如果我們不希望返回所有字段,我們可以只請求返回源中的幾個字段。

GET /bank/_search
{
  "query": { "match_all": {} },
  "_source": ["account_number", "balance"]
}

通過_source關鍵字可以實現字段過濾。

返回腳本字段

可以通過腳本動態返回新定義字段。示例:

GET bank/account/_search
{
    "query" : {
        "match_all": {}
    },
    "size":2,
    "script_fields" : {
        "age2" : {
            "script" : {
                "lang": "painless",
                "source": "doc['age'].value * 2"
            }
        },
        "age3" : {
            "script" : {
                "lang": "painless",
                "source": "params['_source']['age'] * params.factor",
                "params" : {
                    "factor"  : 2.0
                }
            }
        }
    }
}

結果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 1,
    "hits": [
      {
        "_index": "bank",
        "_type": "account",
        "_id": "25",
        "_score": 1,
        "fields": {
          "age3": [
            78
          ],
          "age2": [
            78
          ]
        }
      },
      {
        "_index": "bank",
        "_type": "account",
        "_id": "44",
        "_score": 1,
        "fields": {
          "age3": [
            74
          ],
          "age2": [
            74
          ]
        }
      }
    ]
  }
}

注意:使用doc['my_field_name'].value比使用params['_source']['my_field_name']更快更效率,推薦使用。

AND查詢

如果我們想同時查詢符合A和B字段的結果,該怎么查呢?可以使用must關鍵字組合。

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}


GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "account_number":136 } },
        { "match": { "address": "lane" } },
        { "match": { "city": "Urie" } }
      ]
    }
  }
}

must也等價於:

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "address": "mill" } }
      ],
      "must": [
        { "match": { "address": "lane" } }
      ]
    }
  }
}

這種相當於先查詢A再查詢B,而上面的則是同時查詢符合A和B,但結果是一樣的,執行效率可能有差異。有知道原因的朋友可以告知。

OR查詢

ES使用should關鍵字來實現OR查詢。

GET /bank/_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "account_number":136 } },
        { "match": { "address": "lane" } },
        { "match": { "city": "Urie" } }
      ]
    }
  }
}

AND取反查

must_not關鍵字實現了既不包含A也不包含B的查詢。

GET /bank/_search
{
  "query": {
    "bool": {
      "must_not": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}

表示 address 字段需要符合既不包含 mill 也不包含 lane。

布爾組合查詢

我們可以組合 must 、should 、must_not、filter 進行復雜的查詢。

  • A AND NOT B
GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "age": 40 } }
      ],
      "must_not": [
        { "match": { "state": "ID" } }
      ]
    }
  }
}

相當於SQL:

select * from bank where age=40 and state!= "ID";
  • A AND (B OR C)
GET /bank/_search
{
    "query":{
        "bool":{
            "must":[
                {"match":{"age":39}},
                {"bool":{"should":[
                            {"match":{"city":"Nicholson"}},
                            {"match":{"city":"Yardville"}}
                        ]}
                }
            ]
        }
    }
}

相當於SQL:

select * from bank where age=39 and (city="Nicholson" or city="Yardville");

范圍查詢

GET /bank/_search
{
  "query": {
    "bool": {
      "must": { "match_all": {} },
      "filter": {
        "range": {
          "balance": {
            "gte": 20000,
            "lte": 30000
          }
        }
      }
    }
  }
}
  • A AND (B OR C) AND (D BETWEEN E, F)
GET /bank/_search
{
    "query":{
        "bool":{
            "must":[
                {"match":{"age":39}},
                {"bool":{"should":[
                            {"match":{"city":"Nicholson"}},
                            {"match":{"city":"Yardville"}}
                        ]}
                },
                {"bool":{"filter": {"range": {
                    "balance": {
                        "gte": 20000,
                        "lte": 30000
                    }}}
                  }
                }
            ]
        }
    }
}

相當於SQL:

select * from bank where age=39 and (city="Nicholson" or city="Yardville") and (balance between 20000 and 30000);

如果僅僅是單字段范圍查詢,也可以直接省略 must、filter等關鍵字:

GET /bank/_search
{
    "query":{
        "range":{
            "balance":{
                "gte":20000,
                "lte":30000
            }
        }
    }
}

相當於SQL:

select * from bank where balance between 20000 and 30000;

多字段范圍查詢:

GET /bank/_search
{
  "query": {
    "bool": {
      "must": { "match_all": {} },
      "filter": {
        "bool":{
          "must":[
            {"range": {"balance": {"gte": 20000,"lte": 30000}}},
            {"range": {"age": {"gte": 30}}}
            ]
        }
      }
    }
  }
}

查詢字段不存在或者為0的值

GET /bank/doc/_search
{
    "query":{
        "bool":{
            "should":[
                {
                    "term":{"age":0}
                },
                {
                    "bool":{
                        "must_not":[{"exists":{"field":"age"}}]
                    }
                }
            ]
        }
    }
}

高亮結果

ES可以高亮返回結果里的關鍵字,使用html標記標出。

GET bank/account/_search
{
    "query" : {
        "match": { "address": "Avenue" }
    },
    "from": 0,
    "size": 1,
    "highlight" : {
        "require_field_match": false,
        "fields": {
                "*" : { }
        }
    }
}

輸出:

{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 214,
    "max_score": 1.5814995,
    "hits": [
      {
        "_index": "bank",
        "_type": "account",
        "_id": "102",
        "_score": 1.5814995,
        "_source": {
          "account_number": 102,
          "balance": 29712,
          "firstname": "Dena",
          "lastname": "Olson",
          "age": 27,
          "gender": "F",
          "address": "759 Newkirk Avenue",
          "employer": "Hinway",
          "email": "denaolson@hinway.com",
          "city": "Choctaw",
          "state": "NJ"
        },
        "highlight": {
          "address": [
            "759 Newkirk <em>Avenue</em>"
          ]
        }
      }
    ]
  }
}

返回結果里的highlight部分就是高亮結果,默認使用<em>標出。如果需要修改,可以使用pre_tags設置修改:

"fields": {
    "*" : { "pre_tags" : ["<strong>"], "post_tags" : ["</strong>"] }
}

*代表所有字段都高亮,也可以只高亮具體的字段,直接用具體字段替換*即可。

require_field_match:默認情況下,僅突出顯示包含查詢匹配的字段。設置require_field_match為false突出顯示所有字段。默認為true。詳見:https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-highlighting.html

聚合查詢

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      }
    }
  }
}

結果:

{
  "took": 29,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped" : 0,
    "failed": 0
  },
  "hits" : {
    "total" : 1000,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "group_by_state" : {
      "doc_count_error_upper_bound": 20,
      "sum_other_doc_count": 770,
      "buckets" : [ {
        "key" : "ID",
        "doc_count" : 27
      }, {
        "key" : "TX",
        "doc_count" : 27
      }, {
        "key" : "AL",
        "doc_count" : 25
      }, {
        "key" : "MD",
        "doc_count" : 25
      }, {
        "key" : "TN",
        "doc_count" : 23
      }, {
        "key" : "MA",
        "doc_count" : 21
      }, {
        "key" : "NC",
        "doc_count" : 21
      }, {
        "key" : "ND",
        "doc_count" : 21
      }, {
        "key" : "ME",
        "doc_count" : 20
      }, {
        "key" : "MO",
        "doc_count" : 20
      } ]
    }
  }
}

查詢結果返回了ID州(Idaho)有27個賬戶,TX州(Texas)有27個賬戶。

相當於SQL:

SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC

該查詢意思是按照字段state分組,返回前10個聚合結果。

其中size設置為0意思是不返回文檔內容,僅返回聚合結果。state.keyword表示字段精確匹配,因為使用模糊匹配性能很低,所以不支持。

如果需要聚合的時候對某個字段去重,使用cardinality關鍵字即可:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "cardinality": {
        "field": "state.keyword"
      }
    }
  }
}

多重聚合

我們可以在聚合的基礎上再進行聚合,例如求和、求平均值等等。

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

上述查詢實現了在前一個聚合的基礎上,按州計算平均帳戶余額(同樣僅針對按降序排序的前10個州)。

我們可以在聚合中任意嵌套聚合,以從數據中提取所需的統計數據。

在前一個聚合的基礎上,我們現在按降序排列平均余額:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword",
        "order": {
          "average_balance": "desc"
        }
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

這里基於第二個聚合結果進行倒序排列。其實上一個例子隱藏了默認排序,也就是默認按照_sort(分值)倒序:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword",
        "order": {
          "_sort": "desc"
        }
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

此示例演示了我們如何按年齡段(20-29歲,30-39歲和40-49歲)進行分組,然后按性別分組,最后得到每個年齡段的平均帳戶余額:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      },
      "aggs": {
        "group_by_gender": {
          "terms": {
            "field": "gender.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
    }
  }
}

這個結果就復雜了,屬於嵌套分組,結果也是嵌套的:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_age": {
      "buckets": [
        {
          "key": "20.0-30.0",
          "from": 20,
          "to": 30,
          "doc_count": 451,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "M",
                "doc_count": 232,
                "average_balance": {
                  "value": 27374.05172413793
                }
              },
              {
                "key": "F",
                "doc_count": 219,
                "average_balance": {
                  "value": 25341.260273972603
                }
              }
            ]
          }
        },
        {
          "key": "30.0-40.0",
          "from": 30,
          "to": 40,
          "doc_count": 504,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "F",
                "doc_count": 253,
                "average_balance": {
                  "value": 25670.869565217392
                }
              },
              {
                "key": "M",
                "doc_count": 251,
                "average_balance": {
                  "value": 24288.239043824702
                }
              }
            ]
          }
        },
        {
          "key": "40.0-50.0",
          "from": 40,
          "to": 50,
          "doc_count": 45,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "M",
                "doc_count": 24,
                "average_balance": {
                  "value": 26474.958333333332
                }
              },
              {
                "key": "F",
                "doc_count": 21,
                "average_balance": {
                  "value": 27992.571428571428
                }
              }
            ]
          }
        }
      ]
    }
  }
}

term與match查詢

首先大家看下面的例子有什么區別:

已知條件:ES里address171 Putnam Avenue的數據有1條;addressPutnam的數據有0條。index為bank,type為account,文檔ID為25。

GET /bank/_search
{
  "query": {
        "match" : {
            "address" : "Putnam"
        }
    }
}

GET /bank/_search
{
  "query": {
        "match" : {
            "address.keyword" : "Putnam"
        }
    }
}

GET /bank/_search
{
  "query": {
        "term" : {
            "address" : "Putnam"
        }
    }
}

結果:
1、第一個能匹配到數據,因為會分詞查詢。
2、第二個不能匹配到數據,因為不分詞的話沒有該條數據。
3、結果不確定。需要看實際是怎么分詞的。

我們通過下列查詢可以知曉該條數據字段address的分詞情況:

GET /bank/account/25/_termvectors?fields=address

結果:

{
  "_index": "bank",
  "_type": "account",
  "_id": "25",
  "_version": 1,
  "found": true,
  "took": 0,
  "term_vectors": {
    "address": {
      "field_statistics": {
        "sum_doc_freq": 591,
        "doc_count": 197,
        "sum_ttf": 591
      },
      "terms": {
        "171": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 0,
              "start_offset": 0,
              "end_offset": 3
            }
          ]
        },
        "avenue": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 2,
              "start_offset": 11,
              "end_offset": 17
            }
          ]
        },
        "putnam": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 1,
              "start_offset": 4,
              "end_offset": 10
            }
          ]
        }
      }
    }
  }
}

可以看出該條數據字段address一共分了3個詞:

171
avenue
putnam

現在可以得出第三個查詢的答案:匹配不到!但值改成小寫的putnam又能匹配到了!

原因是:

  • term query 查詢的是倒排索引中確切的term
  • match query 會對filed進行分詞操作,然后再查詢

由於Putnam不在分詞里(大小寫敏感),所以匹配不到。match query先對filed進行分詞,也就是分成putnam,再去匹配倒排索引中的term,所以能匹配到。

standard analyzer 分詞器分詞默認會將大寫字母全部轉為小寫字母。

參考

1、Getting Started | Elasticsearch Reference [6.2] | Elastic
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/getting-started.html
2、Elasticsearch 5.x 關於term query和match query的認識 - wangchuanfu - 博客園
https://www.cnblogs.com/wangchuanfu/p/7444253.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM