Java中String和byte[]間的轉換淺析


Java語言中字符串類型和字節數組類型相互之間的轉換經常發生,網上的分析及代碼也比較多,本文將分析總結常規的byte[]和String間的轉換以及十六進制String和byte[]間相互轉換的原理及實現。

1. String轉byte[]

首先我們來分析一下常規的String轉byte[]的方法,代碼如下:

public static byte[] strToByteArray(String str) {
    if (str == null) {
        return null;
    }
    byte[] byteArray = str.getBytes();
    return byteArray;
}

很簡單,就是調用String類的getBytes()方法。看JDK源碼可以發現該方法最終調用了String類如下的方法。

/**
 * JDK source code
 */
public byte[] getBytes(Charset charset) {
    String canonicalCharsetName = charset.name();
    if (canonicalCharsetName.equals("UTF-8")) {
        return Charsets.toUtf8Bytes(value, offset, count);
    } else if (canonicalCharsetName.equals("ISO-8859-1")) {
        return Charsets.toIsoLatin1Bytes(value, offset, count);
    } else if (canonicalCharsetName.equals("US-ASCII")) {
        return Charsets.toAsciiBytes(value, offset, count);
    } else if (canonicalCharsetName.equals("UTF-16BE")) {
        return Charsets.toBigEndianUtf16Bytes(value, offset, count);
    } else {
        CharBuffer chars = CharBuffer.wrap(this.value, this.offset, this.count);
        ByteBuffer buffer = charset.encode(chars.asReadOnlyBuffer());
        byte[] bytes = new byte[buffer.limit()];
        buffer.get(bytes);
        return bytes;
    }
}

上述代碼其實就是根據給定的編碼方式進行編碼。如果調用的是不帶參數的getBytes()方法,則使用默認的編碼方式,如下代碼所示:

/**
 * JDK source code
 */
private static Charset getDefaultCharset() {
    String encoding = System.getProperty("file.encoding", "UTF-8");
    try {
        return Charset.forName(encoding);
    } catch (UnsupportedCharsetException e) {
        return Charset.forName("UTF-8");
    }
}

關於默認的編碼方式,Java API是這樣說的:

    The default charset is determined during virtual-machine startup and typically depends upon the locale and charset of the underlying operating system.

同樣,由上述代碼可以看出,默認編碼方式是由System類的"file.encoding"屬性決定的,經過測試,在簡體中文Windows操作系統下,默認編碼方式為"GBK",在Android平台上,默認編碼方式為"UTF-8"2. byte[]轉String

接下來分析一下常規的byte[]轉為String的方法,代碼如下:

public static String byteArrayToStr(byte[] byteArray) {
    if (byteArray == null) {
        return null;
    }
    String str = new String(byteArray);
    return str;
}

很簡單,就是String的構造方法之一。那我們分析Java中String的源碼,可以看出所有以byte[]為參數的構造方法最終都調用了如下代碼所示的構造方法。需要注意的是Java中String類的數據是Unicode類型的,因此上述的getBytes()方法是把Unicode類型轉化為指定編碼方式的byte數組;而這里的Charset為讀取該byte數組時所使用的編碼方式。

/**
 * JDK source code
 */
public String(byte[] data, int offset, int byteCount, Charset charset) {
    if ((offset | byteCount) < 0 || byteCount > data.length - offset) { 
        throw failedBoundsCheck(data.length, offset, byteCount);
    }
    // We inline UTF-8, ISO-8859-1, and US-ASCII decoders for speed and because
    // 'count' and 'value' are final.
    String canonicalCharsetName = charset.name();
    if (canonicalCharsetName.equals("UTF-8")) {
        byte[] d = data;
        char[] v = new char[byteCount];
        int idx = offset;
        int last = offset + byteCount;
        int s = 0;
        outer:
        while (idx < last) {
            byte b0 = d[idx++];
            if ((b0 & 0x80) == 0) {
                // 0xxxxxxx
                // Range:  U-00000000 - U-0000007F
                int val = b0 & 0xff;
                v[s++] = (char) val;
            } else if (((b0 & 0xe0) == 0xc0) || ((b0 & 0xf0) == 0xe0) ||
                ((b0 & 0xf8) == 0xf0) || ((b0 & 0xfc) == 0xf8) || ((b0 & 0xfe)
                == 0xfc)) {
                int utfCount = 1;
                if ((b0 & 0xf0) == 0xe0) utfCount = 2;
                else if ((b0 & 0xf8) == 0xf0) utfCount = 3;
                else if ((b0 & 0xfc) == 0xf8) utfCount = 4;
                else if ((b0 & 0xfe) == 0xfc) utfCount = 5;
                // 110xxxxx (10xxxxxx)+
                // Range:  U-00000080 - U-000007FF (count == 1)
                // Range:  U-00000800 - U-0000FFFF (count == 2)
                // Range:  U-00010000 - U-001FFFFF (count == 3)
                // Range:  U-00200000 - U-03FFFFFF (count == 4)
                // Range:  U-04000000 - U-7FFFFFFF (count == 5)
                if (idx + utfCount > last) {
                    v[s++] = REPLACEMENT_CHAR;
                    continue;
                }
                // Extract usable bits from b0
                int val = b0 & (0x1f >> (utfCount - 1));
                for (int i = 0; i < utfCount; ++i) {
                    byte b = d[idx++];
                    if ((b & 0xc0) != 0x80) {
                        v[s++] = REPLACEMENT_CHAR;
                        idx--; // Put the input char back
                        continue outer;
                    }
                    // Push new bits in from the right side
                    val <<= 6;
                    val |= b & 0x3f;
                }
                // Note: Java allows overlong char
                // specifications To disallow, check that val
                // is greater than or equal to the minimum
                // value for each count:
                //
                // count    min value
                // -----   ----------
                //   1           0x80
                //   2          0x800
                //   3        0x10000
                //   4       0x200000
                //   5      0x4000000
                // Allow surrogate values (0xD800 - 0xDFFF) to
                // be specified using 3-byte UTF values only
                if ((utfCount != 2) && (val >= 0xD800) && (val <= 0xDFFF)) {
                    v[s++] = REPLACEMENT_CHAR;
                    continue;
                }
                // Reject chars greater than the Unicode maximum of U+10FFFF.
                if (val > 0x10FFFF) {
                    v[s++] = REPLACEMENT_CHAR;
                    continue;
                }
                // Encode chars from U+10000 up as surrogate pairs
                if (val < 0x10000) {
                    v[s++] = (char) val;
                } else {
                    int x = val & 0xffff;
                    int u = (val >> 16) & 0x1f;
                    int w = (u - 1) & 0xffff;
                    int hi = 0xd800 | (w << 6) | (x >> 10);
                    int lo = 0xdc00 | (x & 0x3ff);
                    v[s++] = (char) hi;
                    v[s++] = (char) lo;
                }
            } else {
                // Illegal values 0x8*, 0x9*, 0xa*, 0xb*, 0xfd-0xff
                v[s++] = REPLACEMENT_CHAR;
            }
        }
        if (s == byteCount) {
            // We guessed right, so we can use our temporary array as-is.
            this.offset = 0;
            this.value = v;
            this.count = s;
        } else {
            // Our temporary array was too big, so reallocate and copy.
            this.offset = 0;
            this.value = new char[s];
            this.count = s;
            System.arraycopy(v, 0, value, 0, s);
        }
    } else if (canonicalCharsetName.equals("ISO-8859-1")) {
        this.offset = 0;
        this.value = new char[byteCount];
        this.count = byteCount;
        Charsets.isoLatin1BytesToChars(data, offset, byteCount, value);
    } else if (canonicalCharsetName.equals("US-ASCII")) {
        this.offset = 0;
        this.value = new char[byteCount];
        this.count = byteCount;
        Charsets.asciiBytesToChars(data, offset, byteCount, value);
    } else {
        CharBuffer cb = charset.decode(ByteBuffer.wrap(data, offset, byteCount));
        this.offset = 0;
        this.count = cb.length();
        if (count > 0) {
            // We could use cb.array() directly, but that would mean we'd have to trust
            // the CharsetDecoder doesn't hang on to the CharBuffer and mutate it later,
            // which would break String's immutability guarantee. It would also tend to
            // mean that we'd be wasting memory because CharsetDecoder doesn't trim the
            // array. So we copy.
            this.value = new char[count];
            System.arraycopy(cb.array(), 0, value, 0, count);
        } else {
            this.value = EmptyArray.CHAR;
        }
    }
}

具體的轉換過程較為復雜,其實就是將byte數組的一個或多個元素按指定的Charset類型讀取並轉換為char類型(char本身就是以Unicode編碼方式存儲的),因為String類的核心是其內部維護的char數組。因此有興趣的同學可以研究下各種編碼方式的編碼規則,然后才能看懂具體的轉換過程。
3. byte[]轉十六進制String

所謂十六進制String,就是字符串里面的字符都是十六進制形式,因為一個byte是八位,可以用兩個十六進制位來表示,因此,byte數組中的每個元素可以轉換為兩個十六進制形式的char,所以最終的HexString的長度是byte數組長度的兩倍。閑話少說上代碼:

public static String byteArrayToHexStr(byte[] byteArray) {
    if (byteArray == null){
        return null;
    }
    char[] hexArray = "0123456789ABCDEF".toCharArray();
    char[] hexChars = new char[byteArray.length * 2];
    for (int j = 0; j < byteArray.length; j++) {
        int v = byteArray[j] & 0xFF;
        hexChars[j * 2] = hexArray[v >>> 4];
        hexChars[j * 2 + 1] = hexArray[v & 0x0F];
    }
    return new String(hexChars);
}

上述代碼中,之所以要將byte數值和0xFF按位與,是因為我們為了方便后面的無符號移位操作(無符號右移運算符>>>只對32位和64位的值有意義),要將byte數據轉換為int類型,而如果直接轉換就會出現問題。因為java里面二進制是以補碼形式存在的,如果直接轉換,位擴展會產生問題,如值為-1的byte存儲的二進制形式為其補碼11111111,而轉換為int后為11111111111111111111111111111111,直接使用該值結果就不對了。而0xFF默認是int類型,即0x000000FF,一個byte值跟0xFF相與會先將那個byte值轉化成int類型運算,這樣,相與的結果中高的24個比特就總會被清0,后面的運算才會正確。
4. 十六進制String轉byte[]

沒什么好說的了,就是byte[]轉十六進制String的逆過程,放代碼:

public static byte[] hexStrToByteArray(String str)
{
    if (str == null) {
        return null;
    }
    if (str.length() == 0) {
        return new byte[0];
    }
    byte[] byteArray = new byte[str.length() / 2];
    for (int i = 0; i < byteArray.length; i++){
        String subStr = str.substring(2 * i, 2 * i + 2);
        byteArray[i] = ((byte)Integer.parseInt(subStr, 16));
    }
    return byteArray;
}

文中所有代碼可以在個人github主頁查看和下載。

 


另,個人技術博客,同步更新,歡迎關注!轉載請注明出處!文中若有什么錯誤希望大家探討指正!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM