SAS LOGISTIC 邏輯回歸中加(EVENT='1')和不加(EVENT='1')區別


區別在於:最大似然估計分析中估計是剛好正負對調
加上EVENT:
%LET DVVAR = Y;
%LET LOGIT_IN = S.T3;
%LET LOGIT_MODEL = S.Model_Params;
%LET LOGIT_SCORE = S.Pred_Probs;

%let VarList= X1_WOE--B&BN._WOE;


/* Storing the results of the model in a dataset */
proc logistic data=&LOGIT_IN OUTEST=&LOGIT_MODEL;
model &DVVAR (event='1')= &VarList /
selection =stepwise sls=0.05 sle=0.05;
OUTPUT OUT=&LOGIT_SCORE P=Pred_Y;
run;


輸出結果
最大似然估計分析

標准 Wald
參數 自由度 估計 誤差 卡方 Pr > 卡方

Intercept 1 -0.2769 0.0618 20.0856 <.0001
X1_WOE 1 0.8903 0.2490 12.7851 0.0003
X3_WOE 1 1.0583 0.1558 46.1674 <.0001
X4_WOE 1 1.0319 0.1264 66.6874 <.0001
B1_WOE 1 0.8293 0.4066 4.1600 0.0414


沒有加上EVENT:
%LET DVVAR = Y;
%LET LOGIT_IN = S.T3;
%LET LOGIT_MODEL = S.Model_Params;
%LET LOGIT_SCORE = S.Pred_Probs;

%let VarList= X1_WOE--B&BN._WOE;


/* Storing the results of the model in a dataset */
proc logistic data=&LOGIT_IN OUTEST=&LOGIT_MODEL;
model &DVVAR= &VarList /
selection =stepwise sls=0.05 sle=0.05;
OUTPUT OUT=&LOGIT_SCORE P=Pred_Y;
run;


輸出結果:

最大似然估計分析

標准 Wald
參數 自由度 估計 誤差 卡方 Pr > 卡方

Intercept 1 0.2769 0.0618 20.0856 <.0001
X1_WOE 1 -0.8903 0.2490 12.7851 0.0003
X3_WOE 1 -1.0583 0.1558 46.1674 <.0001
X4_WOE 1 -1.0319 0.1264 66.6874 <.0001
B1_WOE 1 -0.8293 0.4066 4.1600 0.0414


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM