《位置計算:無線網絡定位》學習小結


第一章:無線定位概述

單跳定位:WiFiGPSNBIOT等單跳網絡結構的定位

多跳定位:傳感網、物聯網等無線自組織網絡的網絡定位(多跳定位)

 

無論何種定位技術,都離不開以下3個主要環節:

(1)物理測量。

對物理世界的測量手段包括WiFiGNSSBlueToothQcellNBIoTUWB,紅外,光波,聲波,超聲波。測量結果的表示包括:距離、時間、方向、區域、連接關系和信號指紋。只要信號具有位置區分性,都可以用來定位。

(2)位置計算。

測量結果不同,定位的計算方法也不同。測距方法通常使用最小二乘法,指紋方法通常使用最相似匹配估計位置。

(3)數據處理。

數據處理貫穿定位每個環節。例如,如何應對環境因素造成的隨機誤差?如何剔除明顯的錯誤數據?這些都是誤差控制。從最簡單的取平均值到復雜的魯棒統計,都是處理誤差和發現異常的有效手段。傳感網中,節點過少如何量化,這是網絡定位的可定位性問題,需要利用圖剛性理論進行分析。節點間距離信息過多?需要優化算法盡量滿足所有的觀測值,也需要統計方法估算定位計算所能達到的精度。

 

好的定位方法不單單追求定位精度,而是以滿足應用需求,適應環境特點為追求目標。

第2章 物理測量

物理測量方法按照測量精度從高到低排列:

目標的精確位置、目標與參考點之間的距離、目標與參考點之間的距離、目標所在區域、目標與參考點之間的網絡跳數、目標鄰居節點信息

2.1 距離測量

很多物理測量都直接或者間接包含着距離約束。例如,信號強度隨距離增加而衰減,信號的傳播時間隨距離的增加而延長。

2.1.1 基於信號強度的測距模型(RSS

Received Signal Strength

在自由空間中,信號強度已被證明與傳播距離的平方線性負相關。然而,在真實環境中,信號的反射、散射、遮蔽等通常會對接收者采集的信號強度產生干擾。

人們普遍認為更精確的信號衰減模型會極大地提高測距方法的精度,然而至今沒有實質性突破。特別對於室內環境,上述傳播模型不能精確描述信號在小尺度空間中的多徑傳播特性。

研究者將目光轉向更細粒度的信道模型---信道沖激響應(CIR)。分離出LOS路徑。

2.1.2 基於信號到達時間的測量模型(ToA

Time of Arrival

對於已知傳播速度的信號來說(聲波、電磁波),只要知道信號傳輸時間,便可計算傳輸距離。該方法的核心是如何精確測量信號的傳播時間。有信號單程和雙程傳播時間的測距。

該方法通常要求測距雙方之間存在信號傳播的直接路徑。多徑效應可以利用基礎的展頻技術來消除。

2.1.3 基於信號的到達時間差的測距模型(TDoA

Time Difference of Arrival

測量精度依賴兩個條件:一、接收者可以精確地測量信號的到達時間;二、接收者之間需要嚴格的時鍾同步。

2.2 角度測量(AoA)

Arrival of Angle

通過信號到達天線陣列的相位差或時間差來算出信號的到達角度。在實際環境中通常充分利用多天線提供的冗余信息,采用基於信號子空間的分析方法如MUSIC算法進一步提高到達角的估計精度。

2.3 區域測量

覆蓋區域的交區域。圓環的交,扇形的交等。

2.4 跳數測量

2.5 鄰居測量

第3章 單跳位置估計

3.1 基於距離的定位方法

多邊測量是一種根據距離定位物理的過程。問題等同於求解超定線性方程的數值解。

3.2 基於到達時間差的定位方法

與一般計算最小方差解的方法不同。研究者設計了多種方法來處理TDoA定位中的非線性方程組。例如,准確而魯棒的泰勒級數法;Chan提出使用兩次最小方差估計的封閉非迭代算法。

3.3 基於到達角的定位方法

求解與各參考節點角度誤差方差最小。極大似然估計求解。

3.4 基於信號指紋的定位方法

基於信號指紋的定位方法直接使用接收信號強度來進行位置估計。在室內環境中,RSS容易受陰影衰落和多徑效應的影響,直接將RSS映射為信號傳播距離可能引入較大誤差

基於指紋方法的合理性在於無線信號強度在空間中的分布相對穩定,因此在同一個位置上的RSS測量值相對穩定且與其他位置上的RSS測量值有所區別。

3.4.1 離線測量方案

就是先人工采集好指紋,然后交付一個區域的定位功能。

缺點是容易受動態環境影響。環境的變化使得數據庫創建階段收集的信號和指紋的位置關聯關系失效。

3.4.2 在線測量方案

投入一些位置已知的硬件設備,后期持續更新數據庫。

 

第4章 室內定位

4.1 室內定位的特點

基礎服務框架不同。不同與GPSBDSGLONASSGalileo全球定位系統。室內無線基礎設施如WLANBlueToothQcellZigBeeRFID等多種多樣。

好在移動規范標准化了Qcell定位的接口。這樣基於運營商室內定位接口至少統一了。

環境變化程度不同。更換了一個AP或者QcellPRRU換了插口,如果基於指紋定位,那么之前的位置關聯信息就需要變化來適應。

定位精度要求不同。室內5米以內的精度才有更多的應用場景。太差了也沒有必要定位了,除非安防或者數據統計作用。

4.2 室內定位技術

基於專用設備的定位:紅外、超聲波、VHFUWBRFID等不同的技術或設備。

基於WiFi信號測距的定位:根據無線信號傳播模型計算接收機與參考點之間的距離。首先需要確定傳播模型的參數,可以通過AP之間相互測試來完成參數的確定。

基於WiFi信號指紋的定位:

現場勘測指紋:

RSS作為指紋的問題是精度有限,主要原因來自兩個方面。

(1)室內環境對無線信號傳播造成的多徑、衰減等干擾,以及室內環境變化導致的RSS的時變性。

(2)RSS是發射信號在接收端能量的體現,在空間上的區分能力有限,通常在1m以上。

更為底層的物理層信息來提取RSS進行室內定位。例如CIR剝離多徑信息。

 

無需現場勘測生成指紋:

WILL充分結合智能手機用戶的移動性和無線信號自身的穿牆衰減效應,實現了無需人工勘測的房間級定位。

LiFS通過數據挖掘用戶的移動性來實現室內絕對定位。LiFS自動收集無線信號指紋,以及伴隨用戶的移動數據。根據同一位置上的指紋相似性,LiFS將不同的用戶或者同一用戶在不同時間收集的位置數據拼接在一起,得到目標區域中兩兩位置之間的距離。將這些距離作為輸入,利用Multi-Dimensional Scaling算法生成指紋空間。接下來,LiFS對室內平面地圖進行均勻采樣,並設計任意兩點之間的步行距離,同樣通過MDS算法得到無壓力平面圖。利用相關圖論理論,通過數據挖掘指紋空間和無壓力平面圖在空間相似性,LiFS將指紋空間和無壓力圖匹配到一起。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM