在文章《基於Allwinner的Audio子系統分析(Android-5.1)》中已經介紹了Audio的系統架構以及應用層調用的流程,接下來,繼續分析AudioRecorder方法中的getMinBufferSize的實現
函數原型:
public static int getMinBufferSize (int sampleRateInHz, int channelConfig, int audioFormat)
作用:
返回成功創建AudioRecord對象所需要的最小緩沖區大小
參數:
sampleRateInHz:默認采樣率,單位Hz,這里設置為44100,44100Hz是當前唯一能保證在所有設備上工作的采樣率;
channelConfig: 描述音頻聲道設置,這里設置為AudioFormat.CHANNEL_CONFIGURATION_MONO,CHANNEL_CONFIGURATION_MONO保證能在所有設備上工作;
audioFormat:音頻數據的采樣精度,這里設置為AudioFormat.ENCODING_16BIT;
返回值:
返回成功創建AudioRecord對象所需要的最小緩沖區大小。 注意:這個大小並不保證在負荷下的流暢錄制,應根據預期的頻率來選擇更高的值,AudioRecord實例在推送新數據時使用此值
如果硬件不支持錄制參數,或輸入了一個無效的參數,則返回ERROR_BAD_VALUE(-2),如果硬件查詢到輸出屬性沒有實現,或最小緩沖區用byte表示,則返回ERROR(-1)
接下來進入系統分析具體實現
frameworks/base/media/java/android/media/AudioRecord.java
static public int getMinBufferSize(int sampleRateInHz, int channelConfig, int audioFormat) { int channelCount = 0; switch (channelConfig) { case AudioFormat.CHANNEL_IN_DEFAULT: // AudioFormat.CHANNEL_CONFIGURATION_DEFAULT //1 case AudioFormat.CHANNEL_IN_MONO: //16 case AudioFormat.CHANNEL_CONFIGURATION_MONO://2 channelCount = 1; break; case AudioFormat.CHANNEL_IN_STEREO: //12 case AudioFormat.CHANNEL_CONFIGURATION_STEREO://3 case (AudioFormat.CHANNEL_IN_FRONT | AudioFormat.CHANNEL_IN_BACK): // 16||32 channelCount = 2; break; case AudioFormat.CHANNEL_INVALID://0 default: loge("getMinBufferSize(): Invalid channel configuration."); return ERROR_BAD_VALUE; } // PCM_8BIT is not supported at the moment if (audioFormat != AudioFormat.ENCODING_PCM_16BIT) { loge("getMinBufferSize(): Invalid audio format."); return ERROR_BAD_VALUE; } int size = native_get_min_buff_size(sampleRateInHz, channelCount, audioFormat); if (size == 0) { return ERROR_BAD_VALUE; } else if (size == -1) { return ERROR; } else { return size; } }
對音頻通道與音頻采樣精度進行判斷,單聲道(MONO)時channelCount為1,立體聲(STEREO)時channelCount為2,且A64上僅支持PCM_16BIT采樣,其值為2,然后繼續調用native函數
frameworks/base/core/jni/android_media_AudioRecord.cpp
static jint android_media_AudioRecord_get_min_buff_size(JNIEnv *env, jobject thiz, jint sampleRateInHertz, jint channelCount, jint audioFormat) { ALOGV(">> android_media_AudioRecord_get_min_buff_size(%d, %d, %d)", sampleRateInHertz, channelCount, audioFormat); size_t frameCount = 0; //從java轉成jni的format類型 audio_format_t format = audioFormatToNative(audioFormat);//AUDIO_FORMAT_PCM_16_BIT=0x1 //獲取frameCount,並判斷硬件是否支持 status_t result = AudioRecord::getMinFrameCount(&frameCount, sampleRateInHertz, format, audio_channel_in_mask_from_count(channelCount)); if (result == BAD_VALUE) { return 0; } if (result != NO_ERROR) { return -1; } return frameCount * channelCount * audio_bytes_per_sample(format); }
調用服務端的函數,獲取frameCount大小,最后返回了frameCount*聲道數*采樣精度,其中frameCount表示最小采樣幀數,繼續分析frameCount的計算方法
frameworks/av/media/libmedia/AudioRecord.cpp
status_t AudioRecord::getMinFrameCount( size_t* frameCount, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask) { if (frameCount == NULL) { return BAD_VALUE; } size_t size; status_t status = AudioSystem::getInputBufferSize(sampleRate, format, channelMask, &size); if (status != NO_ERROR) { ALOGE("AudioSystem could not query the input buffer size for sampleRate %u, format %#x, " "channelMask %#x; status %d", sampleRate, format, channelMask, status); return status; } //計算出最小的frame // We double the size of input buffer for ping pong use of record buffer. // Assumes audio_is_linear_pcm(format) if ((*frameCount = (size * 2) / (audio_channel_count_from_in_mask(channelMask) * audio_bytes_per_sample(format))) == 0) { ALOGE("Unsupported configuration: sampleRate %u, format %#x, channelMask %#x", sampleRate, format, channelMask); return BAD_VALUE; } return NO_ERROR; }
此時frameCount= size*2/(聲道數*采樣精度),注意這里需要double一下,而size是由hal層得到的,AudioSystem::getInputBufferSize()函數最終會調用到HAL層
frameworks/av/media/libmedia/AudioSystem.cpp
status_t AudioSystem::getInputBufferSize(uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t* buffSize) { const sp<IAudioFlinger>& af = AudioSystem::get_audio_flinger(); if (af == 0) { return PERMISSION_DENIED; } Mutex::Autolock _l(gLockCache); // Do we have a stale gInBufferSize or are we requesting the input buffer size for new values size_t inBuffSize = gInBuffSize; if ((inBuffSize == 0) || (sampleRate != gPrevInSamplingRate) || (format != gPrevInFormat) || (channelMask != gPrevInChannelMask)) { gLockCache.unlock(); inBuffSize = af->getInputBufferSize(sampleRate, format, channelMask); gLockCache.lock(); if (inBuffSize == 0) { ALOGE("AudioSystem::getInputBufferSize failed sampleRate %d format %#x channelMask %x", sampleRate, format, channelMask); return BAD_VALUE; } // A benign race is possible here: we could overwrite a fresher cache entry // save the request params gPrevInSamplingRate = sampleRate; gPrevInFormat = format; gPrevInChannelMask = channelMask; gInBuffSize = inBuffSize; } *buffSize = inBuffSize; return NO_ERROR; }
這里通過get_audio_flinger獲取到了一個AudioFlinger對象
const sp<IAudioFlinger> AudioSystem::get_audio_flinger() { sp<IAudioFlinger> af; sp<AudioFlingerClient> afc; { Mutex::Autolock _l(gLock); if (gAudioFlinger == 0) { sp<IServiceManager> sm = defaultServiceManager(); sp<IBinder> binder; do { binder = sm->getService(String16("media.audio_flinger")); if (binder != 0) break; ALOGW("AudioFlinger not published, waiting..."); usleep(500000); // 0.5 s } while (true); if (gAudioFlingerClient == NULL) { gAudioFlingerClient = new AudioFlingerClient(); } else { if (gAudioErrorCallback) { gAudioErrorCallback(NO_ERROR); } } binder->linkToDeath(gAudioFlingerClient); gAudioFlinger = interface_cast<IAudioFlinger>(binder); LOG_ALWAYS_FATAL_IF(gAudioFlinger == 0); afc = gAudioFlingerClient; } af = gAudioFlinger; } if (afc != 0) { af->registerClient(afc); } return af; }
然后判斷是否參數是之前配置過的參數,這樣做是為了防止重復多次調用getMinBufferSize導致占用硬件資源,所以當第一次調用或更新參數調用后,則調用AF中的getInputBufferSize方法獲取BuffSize,而af是IAudioFlinger類型的智能指針,所以實際上會通過binder到達AudioFlinger中
frameworks\av\services\audioflinger\AudioFlinger.cpp
size_t AudioFlinger::getInputBufferSize(uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask) const { status_t ret = initCheck(); if (ret != NO_ERROR) { return 0; } AutoMutex lock(mHardwareLock); mHardwareStatus = AUDIO_HW_GET_INPUT_BUFFER_SIZE; audio_config_t config; memset(&config, 0, sizeof(config)); config.sample_rate = sampleRate; config.channel_mask = channelMask; config.format = format; audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); size_t size = dev->get_input_buffer_size(dev, &config); mHardwareStatus = AUDIO_HW_IDLE; return size; }
把參數傳遞給hal層,獲取buffer大小
hardware\aw\audio\tulip\audio_hw.c
static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { size_t size; int channel_count = popcount(config->channel_mask); if (check_input_parameters(config->sample_rate, config->format, channel_count) != 0) return 0; return get_input_buffer_size(config->sample_rate, config->format, channel_count); }
再次檢查一次參數是否正確,為什么在很多函數里面都做一次檢查參數呢?可能在其他的地方也調用到了這個函數,所以最好做一次檢查,確保萬無一失
static size_t get_input_buffer_size(uint32_t sample_rate, int format, int channel_count) { size_t size; size_t device_rate; if (check_input_parameters(sample_rate, format, channel_count) != 0) return 0; /* take resampling into account and return the closest majoring multiple of 16 frames, as audioflinger expects audio buffers to be a multiple of 16 frames */ size = (pcm_config_mm_in.period_size * sample_rate) / pcm_config_mm_in.rate; size = ((size + 15) / 16) * 16; return size * channel_count * sizeof(short); }
這里包含一個結構體struct pcm_config,定義了一個周期包含了多少采樣幀,並根據結構體的rate數據進行重采樣計算,這里的rate是以MM_SAMPLING_RATE為標准,即44100,一個采樣周期有1024個采樣幀,然后計算出重采樣之后的size
同時audioflinger的音頻buffer是16的整數倍,所以再次計算得出一個最接近16倍的整數,最后返回size*聲道數*1幀數據所占字節數
struct pcm_config pcm_config_mm_in = { .channels = 2, .rate = MM_SAMPLING_RATE, .period_size = 1024, .period_count = CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, };
總結:
minBuffSize = ((((((((pcm_config_mm_in.period_size * sample_rate) / pcm_config_mm_in.rate) + 15) / 16) * 16) * channel_count * sizeof(short)) * 2) / (audio_channel_count_from_in_mask(channelMask) * audio_bytes_per_sample(format))) * channelCount * audio_bytes_per_sample(format);
=(((((((pcm_config_mm_in.period_size * sample_rate) / pcm_config_mm_in.rate) + 15) / 16) * 16) * channel_count * sizeof(short)) * 2)
其中:pcm_config_mm_in.period_size=1024;pcm_config_mm_in.rate=44100;這里我們可以看到他除掉(channelCount*format),后面又乘回來了,這個是因為在AudioRecord.cpp對frameCount進行了一次校驗,判斷是否支持該參數的設置。
以getMinBufferSize(44100, MONO, 16BIT);為例,即sample_rate=44100,channel_count=1, format=2,那么
BufferSize = (((1024*sample_rate/44100)+15)/16)*16*channel_count*sizeof(short)*2 = 4096
即最小緩沖區大小為:周期大小 * 重采樣 * 采樣聲道數 * 2 * 采樣精度所占字節數;這里的2的解釋為We double the size of input buffer for ping pong use of record buffer,采樣精度:PCM_8_BIT為unsigned char,PCM_16_BIT為short,PCM_32_BIT為int。
由於作者內功有限,若文章中存在錯誤或不足的地方,還請給位大佬指出,不勝感激!