關於itertools.groupby()
itertools.groupby()就是將相鄰的並且相同的鍵值划分為同一組,相似功能可以看https://docs.python.org/3/library/itertools.html?highlight=groupby#itertools.groupby寫的groupby類
>>> list_a ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'D', 'A', 'A', 'B', 'B', 'B'] >>> for date, items in groupby(list_a): ... print('date: {}'.format(date)) ... for item in items: ... print(item, end=" ") ... print("\n==========") ... date: A A A A A ========== date: B B B B ========== date: C C C ========== date: D D ========== date: A A A ========== date: B B B B ==========
是不是發現上述例子還有可簡化之處,畢竟A的分組要都歸為一組(這是因為存在不相鄰的A才出現的情況):
>>> list_a ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'D', 'A', 'A', 'B', 'B', 'B'] >>> list_a.sort(key=lambda list: list) # 經過lambda匿名函數排序后,將相鄰的元素放在一起 >>> list_a ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'D'] >>> for date, items in groupby(list_a): ... print('date: {}'.format(date)) ... for item in items: ... print(item, end=" ") ... print("\n==========") ... date: A A A A A A A ========== date: B B B B B B B ========== date: C C C ========== date: D D ==========
除了使用lambda匿名函數之外,還可以使用operator.itemgetter()函數,效率比lambda更快一些,具體可以看《Python Cookbook》
關於itertools.compress(data, selectors)
根據傳遞進去的選擇器進行判斷是否保留數據
>>> list1 = [1, 4, 7, 2, 98, 3, 6, 2] >>> list_TF = [0,1,0,1,1,1,0,0] >>> list_TF = [n ==1 for n in list_TF] >>> list_TF [False, True, False, True, True, True, False, False] >>> from itertools import compress >>> list(compress(list1, list_TF)) [4, 2, 98, 3]
其實通過教程我們還可以發現compress是大致如下:
>>> list1 [1, 4, 7, 2, 98, 3, 6, 2] >>> list_TF [False, True, False, True, True, True, False, False] >>> [n for n,s in zip(list1, list_TF) if s] [4, 2, 98, 3]
如果覺得慢,還可以使用生成器來代替